Math Doubts

Limit rules

Properties

List of fundamental properties of limits in mathematical form.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}+g{(x)}\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}-g{(x)}\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}.g{(x)}\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

$(4) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}$

$(5) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

$(6) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(g{(x)})}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}\Big)}$

Formulas

List of standard results in all branches of mathematics.

Exponential Limit Rules

Learn list of limit rules for exponential functions.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize e^{f{(x)}}}$ $\,=\,$ $e^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {[f{(x)}]}^n}$ $\,=\,$ ${\Big[\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}\Big]}^n$

$(4) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \sqrt[\displaystyle n]{f{(x)}} }$ $\,=\,$ $\sqrt[\displaystyle n]{ \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)} }}$

$(5) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{e^{\displaystyle \normalsize x}-1}{x} \,=\, 1$

$(6) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x} \,=\, \log_{e}{a}$

$(7) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a} \dfrac{x^n-a^n}{x-a}$ $\,=\,$ $n.a^{n-1}$

$(8) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} {(1+x)}^\frac{1}{x}$ $\,=\,$ $e$

$(9) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty} {\Bigg(1+\dfrac{1}{x}\Bigg)}^x$ $\,=\,$ $e$

Trigonometric Limit Rules

Learn list of limits of trigonometric functions in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}} \,=\, 1$

Inverse Trigonometric Limit Rules

Learn list of inverse trigonometric limit rules, used in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan^{-1}{x}}{x}} \,=\, 1$

Logarithmic Limit Rule

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+x)}}{x}} \,=\, 1$



Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more