Math Doubts

Limit rules

The list of fundamental properties and standard results of limits.

Properties

List of fundamental properties of limits in mathematical form.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)+g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)-g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x) \times g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(4) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f(x)}{g(x)}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}}$

$(5) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{1}{f(x)}}$ $\,=\,$ $\dfrac{1}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}}$

$(6) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}\Big)}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

$(7) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize e^{f{(x)}}}$ $\,=\,$ $e^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}$

$(8) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {[f{(x)}]}^n}$ $\,=\,$ ${\Big[\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}\Big]}^n$

$(9) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \sqrt[\displaystyle n]{f{(x)}} }$ $\,=\,$ $\sqrt[\displaystyle n]{ \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)} }}$

$(10) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(g{(x)})}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}\Big)}$

Formulas

List of standard results in all branches of mathematics.

Exponential Limit Rules

Learn list of limit rules for exponential functions.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{e^{\displaystyle \normalsize x}-1}{x} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x} \,=\, \log_{e}{a}$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a} \dfrac{x^n-a^n}{x-a}$ $\,=\,$ $n.a^{n-1}$

$(4) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} {(1+x)}^\frac{1}{x}$ $\,=\,$ $e$

$(5) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty} {\Big(1+\dfrac{1}{x}\Big)}^{\displaystyle x}$ $\,=\,$ $e$

Trigonometric Limit Rules

Learn list of limits of trigonometric functions in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}} \,=\, 1$

Inverse Trigonometric Limit Rules

Learn list of inverse trigonometric limit rules, used in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan^{-1}{x}}{x}} \,=\, 1$

Logarithmic Limit Rule

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+x)}}{x}} \,=\, 1$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved