Math Doubts

Limits rules

The list of fundamental properties and standard results of limits.

Operations

There are four fundamental limit operations in calculus. Let’s learn each limit operation with proof and examples to understand how to use them in mathematics.

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x)+g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x)-g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $-$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize g(x)}$

$(3).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x) \times g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $\times$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize g(x)}$

$(4).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize \dfrac{f(x)}{g(x)}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}}{\displaystyle \large \lim_{x\,\to\,a}{\normalsize g(x)}}$

Likewise, there are two other limit operations in mathematics. So, let us learn them with proofs and example to learn how to use them mathematically in calculus.

$(5).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize \dfrac{1}{f(x)}}$ $\,=\,$ $\dfrac{1}{\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}}$

$(6).\,\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize {f(x)}^{\displaystyle g(x)}}$ $\,=\,$ $\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}\Big)}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

Properties

List of fundamental properties of limits in mathematical form.

$(7) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize e^{f{(x)}}}$ $\,=\,$ $e^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}$

$(8) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {[f{(x)}]}^n}$ $\,=\,$ ${\Big[\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}\Big]}^n$

$(9) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \sqrt[\displaystyle n]{f{(x)}} }$ $\,=\,$ $\sqrt[\displaystyle n]{ \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)} }}$

$(10) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(g{(x)})}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}\Big)}$

Formulas

List of standard results in all branches of mathematics.

Exponential Limit Rules

Learn list of limit rules for exponential functions.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{e^{\displaystyle \normalsize x}-1}{x} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x} \,=\, \log_{e}{a}$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a} \dfrac{x^n-a^n}{x-a}$ $\,=\,$ $n.a^{n-1}$

$(4) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} {(1+x)}^\frac{1}{x}$ $\,=\,$ $e$

$(5) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty} {\Big(1+\dfrac{1}{x}\Big)}^{\displaystyle x}$ $\,=\,$ $e$

Trigonometric Limit Rules

Learn list of limits of trigonometric functions in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}} \,=\, 1$

Inverse Trigonometric Limit Rules

Learn list of inverse trigonometric limit rules, used in calculus.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan^{-1}{x}}{x}} \,=\, 1$

Logarithmic Limit Rule

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+x)}}{x}} \,=\, 1$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved