To find limits of exponential functions, it is essential to study some properties and standards results in calculus and they are used as formulas in evaluating the limits of functions in which exponential functions are involved.
There are four basic properties in limits, which are used as formulas in evaluating the limits of exponential functions.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{f{(x)}}}$ $\,=\,$ $b^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize {[f{(x)}]}^n}$ $\,=\,$ ${\Big[\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}\Big]}^n$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \sqrt[\displaystyle n]{f{(x)}} }$ $\,=\,$ $\sqrt[\displaystyle n]{ \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)} }}$
There are five standard results in limits and they are used as formulas while finding the limits of the functions in which exponential functions are involved.
$(1) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^n-a^n}{x-a}}$ $\,=\,$ $n.a^{n-1}$
$(2) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle \normalsize x}-1}{x}}$ $\,=\,$ $1$
$(3) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x}}$ $\,=\,$ $\log_{e}{a}$
$(4) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^\frac{1}{x}}$ $\,=\,$ $e$
$(5) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Bigg(1+\dfrac{1}{x}\Bigg)}^x}$ $\,=\,$ $e$
List of solved limits problems for evaluating the limits of functions in which exponential functions are involved.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved