To find limits of exponential functions, it is essential to study some properties and standards results in calculus and they are used as formulas in evaluating the limits of functions in which exponential functions are involved.

There are four basic properties in limits, which are used as formulas in evaluating the limits of exponential functions.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{f{(x)}}}$ $\,=\,$ $b^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}$

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize {[f{(x)}]}^n}$ $\,=\,$ ${\Big[\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}\Big]}^n$

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \sqrt[\displaystyle n]{f{(x)}} }$ $\,=\,$ $\sqrt[\displaystyle n]{ \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)} }}$

There are five standard results in limits and they are used as formulas while finding the limits of the functions in which exponential functions are involved.

$(1) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^n-a^n}{x-a}}$ $\,=\,$ $n.a^{n-1}$

$(2) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle \normalsize x}-1}{x}}$ $\,=\,$ $1$

$(3) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x}}$ $\,=\,$ $\log_{e}{a}$

$(4) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^\frac{1}{x}}$ $\,=\,$ $e$

$(5) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Bigg(1+\dfrac{1}{x}\Bigg)}^x}$ $\,=\,$ $e$

List of solved limits problems for evaluating the limits of functions in which exponential functions are involved.

Latest Math Topics

Jul 20, 2023

Jun 26, 2023

Jun 23, 2023

Latest Math Problems

Jul 01, 2023

Jun 25, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved