# Properties of Limits

There are some fundamental properties in limits. They are used as formulas in some basic operations and also used in evaluating limits of the functions in calculus.

### Operations

The list of fundamental operations of limits with their formulas and proofs.

$(1).\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x)+g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(2).\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x)-g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(3).\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x) \times g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

$(4).\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f(x)}{g(x)}}$ $\,=\,$ $\dfrac\large \lim_{x \,\to\, a}{\normalsize f(x)}}\large \lim_{x \,\to\, a}{\normalsize g(x)}$

### Reciprocal rule

The limit of reciprocal of a function is equal to the reciprocal of limit of the function.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{1}{f(x)}}$ $\,=\,$ $\dfrac{1}\large \lim_{x \,\to\, a}{\normalsize f(x)}$

### Constant multiple rule

The limit of product of a constant and a function is equal to the product of constant and the limit of the function.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[k.f{(x)}\Big]}$ $\,=\,$ $k \times \displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$

### Exponential rules

The limit of an exponential function is equal to exponentiation of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

### Composition

The limit of composition of two functions is equal to the value of the function for the limit of its internal function.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{\Big(g{(x)}\Big)}}$ $\,=\,$ $f{\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}\Big)$

### Formulas

List of standard results of limits with proofs to use them as formulas in calculus.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.