Math Doubts

Fundamental operations of Limits

The fundamental operations are also involved in limits. So, it is essential to learn the basic mathematical operations with their formulas for studying the limits clearly. Here is the list of fundamental operations of limits with their formulas.

Addition

The limit of sum of two or more functions is equal to sum of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x)+g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

Subtraction

The limit of difference of any two functions is equal to difference of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x)-g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

Multiplication

The limit of product of two or more functions is equal to product of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f(x) \times g(x)\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

Division

The limit of quotient of two functions is equal to quotient of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f(x)}{g(x)}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}}$

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more