The fundamental operations are also involved in limits. So, it is essential to learn the basic mathematical operations with their formulas for studying the limits clearly. Here is the list of fundamental operations of limits with their formulas.

The limit of sum of two or more functions is equal to sum of their limits.

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x)+g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

The limit of difference of any two functions is equal to difference of their limits.

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x)-g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

The limit of product of two or more functions is equal to product of their limits.

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize \Big(f(x) \times g(x)\Big)}$ $\,=\,$ $\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g(x)}$

The limit of quotient of two functions is equal to quotient of their limits.

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize \dfrac{f(x)}{g(x)}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}}{\displaystyle \large \lim_{x\,\to\,a}{\normalsize g(x)}}$

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize \dfrac{1}{f(x)}}$ $\,=\,$ $\dfrac{1}{\displaystyle \large \lim_{x\,\to\,a}{\normalsize f(x)}}$

$\displaystyle \large \lim_{x\,\to\,a}{\normalsize {f(x)}^{\displaystyle g(x)}}$ $\,=\,$ $\Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize {f{(x)}\Big)}^{\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}}$

Latest Math Topics

Jul 20, 2023

Jun 26, 2023

Jun 23, 2023

Latest Math Problems

Jul 01, 2023

Jun 25, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved