The derivative of cos function with respect to a variable is equal to negative sine. If $x$ denotes a variable, then the cosine function is expressed as $\cos{x}$ in mathematics. So, the differentiation of the $\cos{x}$ with respect to $x$ is equal to $-\sin{x}$ and it is proved from first principle mathematically.
On the basis of definition of the derivative, the derivative of the function with respect to $x$ can be written in the following limiting operation form.
$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$
Take $f{(x)} = \cos{x}$, then $f{(x+h)} = \cos{(x+h)}$. Now, the mathematical proof for the differentiation of $\cos{x}$ function with respect to $x$ can be derived from first principle.
$\implies \dfrac{d}{dx}{\, (\cos{x})}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+h)}-\cos{x}}{h}}$
$\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+h)}-\cos{x}}{h}}$
The simplification of the trigonometric expression in the numerator can be started by expanding the $\cos{(x+h)}$ function as per the angle sum identity of cos function.
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}\cos{h}-\sin{x}\sin{h}-\cos{x}}{h}}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}\cos{h}-\cos{x}-\sin{x}\sin{h}}{h}}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}{(\cos{h}-1)}-\sin{x}\sin{h}}{h}}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}{((-1)(1-\cos{h}))}-\sin{x}\sin{h}}{h}}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{{(-\cos{x})}{(1-\cos{h})}-\sin{x}\sin{h}}{h}}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{{(-\cos{x})}{(1-\cos{h})}-\sin{x}\sin{h}}{h}\Bigg]}$
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{{(-\cos{x})}{(1-\cos{h})}}{h} – \dfrac{\sin{x}\sin{h}}{h}\Bigg]}$
According to difference rule of limits, the limit of the difference of two functions can be evaluated by evaluating the difference of their limits.
$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{{(-\cos{x})}{(1-\cos{h})}}{h}}$ $-$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{x}\sin{h}}{h}}$
The input of limiting operations is in terms of $h$. So, the functions in terms of $x$ are constant functions. Therefore, $-\cos{x}$ from first function and $\sin{x}$ from second function can be separated according to the constant multiple rule of limits.
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{h}}{h}}$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{h}}{h}}$
According to the limit of trigonometric function rule, the limit of $\sin{h}/{h}$ as $h$ approaches $0$ is equal to one.
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times 1$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-\sin{x}$
The trigonometric expression in the numerator in the first term of the expression can be simplified by the power reduction rule of sine function.
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{2\sin^2{\Big(\dfrac{h}{2}\Big)}}{h}}$ $-\sin{x}$
The number $2$ is a factor and multiplying sine function in the numerator and it divides the denominator. It is recommendable to shift it to denominator for simplifying the term further.
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin^2{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)} \times \sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}} \times \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
The limit of product of two functions can be written as product of their limits by the product rule of limits.
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
If $h \to 0$, then $\dfrac{h}{2} \to \dfrac{0}{2}$. So, $\dfrac{h}{2} \to 0$. Therefore, if $h$ approaches $0$, then $\dfrac{h}{2}$ also approaches $0$.
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{\frac{h}{2} \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
Take $t = \dfrac{h}{2}$ and transform the first limit function only in the first term of the expression.
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{t \,\to\, 0}{\normalsize \dfrac{\sin{t}}{t}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
Therefore, the limit of the quotient of $\sin{t}$ by $t$ as $t$ tends to $0$ is equal to one.
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[1 \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \Bigg[\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)}}$ $-\sin{x}$
Now, evaluate the limit of the trigonometric function by the direct substitution method.
$= \,\,\,$ ${(-\cos{x})} \times \sin{\Big(\dfrac{0}{2}\Big)}$ $-\sin{x}$
$= \,\,\,$ ${(-\cos{x})} \times \sin{(0)}$ $-\sin{x}$
The exact value of the sine of zero degrees is zero.
$= \,\,\,$ ${(-\cos{x})} \times 0$ $-\sin{x}$
$= \,\,\,$ $0-\sin{x}$
$= \,\,\,$ $-\sin{x}$
$\therefore \,\,\,\,\,\, \dfrac{d}{dx}{\, (\cos{x})} \,=\, -\sin{x}$
Therefore, it is proved by first principle that the derivative of $\cos{x}$ with respect to $x$ is equal to negative $\sin{x}$.
According to definition of the derivative, the differentiation of the function in terms of $x$ can be written in the following limiting operation form.
$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f(x+\Delta x)-f(x)}{\Delta x}}$
Take $f{(x)} = \cos{x}$, then $f{(x+\Delta x)} = \cos{(x+\Delta x)}$. Now, the proof of derivative of $\cos{x}$ function with respect to $x$ can be started by the first principle.
$\implies \dfrac{d}{dx}{\, (\cos{x})}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+\Delta x)}-\cos{x}}{\Delta x}}$
Now, use difference to product identity of cos functions to combine the difference of two cosine functions in the numerator of the function.
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{x+\Delta x+x}{2}\Bigg]}\sin{\Bigg[\dfrac{x+\Delta x-x}{2}\Bigg]}}{\Delta x}}$
$= \,\,\,$ $\require{cancel} \displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\cancel{x}+\Delta x-\cancel{x}}{2}\Bigg]}}{\Delta x}}$
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\Delta x}}$
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-1 \times 2 \times \sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\Delta x}}$
The factor $2$ multiplies the other factors in the numerator and it divides the denominator. So, it can be shifted to denominator.
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-1 \times \sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
Now, divide the whole function as product of two functions.
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg(-\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]} \times \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}\Bigg)}$
As per the product rule of limits, the limit of product of functions is equal to product of their limits.
$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize -\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
Firstly, evaluate the limit of the sin function by using direct substitution method.
$= \,\,\,$ $-\sin{\Bigg[\dfrac{2x+0}{2}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
$= \,\,\,$ $-\sin{\Bigg[\dfrac{2x}{2}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
$= \,\,\,$ $\require{cancel} -\sin{\Bigg[\dfrac{\cancel{2}x}{\cancel{2}}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
The limit of second sine function is almost similar to the limit of sinx/x as x approaches 0 rule but its input is slightly different. Therefore, set this function same as the standard result.
If, $\Delta x \,\to\, 0$, then $\dfrac{\Delta x}{2} \,\to\, \dfrac{0}{2}$. So, $\dfrac{\Delta x}{2} \,\to\, 0$. It proved that if $\Delta x$ approaches $0$, then $\dfrac{\Delta x}{2}$ also tends to zero.
$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{\frac{\Delta x}{2} \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$
Take $m = \dfrac{\Delta x}{2}$ and then transform the entire function in terms of $m$.
$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\sin{m}}{m}}$
The limit of trigonometric function is same as the limit of $\sin{x}/x$ as $x$ tends to $0$ formula exactly. Therefore, the limit of trigonometric function is equal to $1$.
$= \,\,\,$ $-\sin{x} \times 1$
$= \,\,\,$ $-\sin{x}$
$\therefore \,\,\,\,\,\, {(\cos{x})}’ \,=\, -\sin{x}$
Therefore, it has proved from first principle that the differentiation of cos function with respect to a variable is equal to negative sine.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved