In differential calculus, there are six derivative formulas to find the differentiation of the trigonometric functions. Each derivative rule is given here with mathematical proof.
$(1).\,$ $\dfrac{d}{dx}\,\sin{x}$ $\,=\,$ $\cos{x}$
$(2).\,$ $\dfrac{d}{dx}\,\cos{x}$ $\,=\,$ $-\sin{x}$
$(3).\,$ $\dfrac{d}{dx}\,\tan{x}$ $\,=\,$ $\sec^2{x}$
$(4).\,$ $\dfrac{d}{dx}\,\cot{x}$ $\,=\,$ $-\csc^2{x}$ (or) $-\operatorname{cosec}^2{x}$
$(5).\,$ $\dfrac{d}{dx}\,\sec{x}$ $\,=\,$ $\sec{x}.\tan{x}$
$(6).\,$ $\dfrac{d}{dx}\,\csc{x}$ $\,=\,$ $-\csc{x}.\cot{x}$ (or) $-\operatorname{cosec}{x}.\cot{x}$
$(1).\,$ $\dfrac{d}{dx}{\,\sin{(ax)}}$ $\,=\,$ $a\cos{(ax)}$
$(2).\,$ $\dfrac{d}{dx}{\,\cos{(ax)}} \,=\, -a\sin{(ax)}$
$(3).\,$ $\dfrac{d}{dx}{\,\tan{(ax)}} \,=\, a\sec^2{(ax)}$
$(4).\,$ $\dfrac{d}{dx}{\,\cot{(ax)}}$ $\,=\,$ $-a\csc^2{(ax)}$ (or) $-a\operatorname{cosec}^2{(ax)}$
$(5).\,$ $\dfrac{d}{dx}{\,\sec{(ax)}} \,=\, a\sec{(ax)}.\tan{(ax)}$
$(6).\,$ $\dfrac{d}{dx}{\,\csc{(ax)}}$ $\,=\,$ $-a\csc{(ax)}.\cot{(ax)}$ (or) $-a\operatorname{cosec}{(ax)}.\cot{(ax)}$
$(1).\,$ $\dfrac{d}{dx}{\,\sin{(ax+b)}}$ $\,=\,$ $a\cos{(ax+b)}$
$(2).\,$ $\dfrac{d}{dx}{\,\cos{(ax+b)}} \,=\, -a\sin{(ax+b)}$
$(3).\,$ $\dfrac{d}{dx}{\,\tan{(ax+b)}} \,=\, a\sec^2{(ax+b)}$
$(4).\,$ $\dfrac{d}{dx}{\,\cot{(ax+b)}}$ $\,=\,$ $-a\csc^2{(ax+b)}$ (or) $-a\operatorname{cosec}^2{(ax+b)}$
$(5).\,$ $\dfrac{d}{dx}{\,\sec{(ax+b)}} \,=\, a\sec{(ax+b)}.\tan{(ax+b)}$
$(6).\,$ $\dfrac{d}{dx}{\,\csc{(ax+b)}}$ $\,=\,$ $-a\csc{(ax+b)}.\cot{(ax+b)}$ (or) $-a\operatorname{cosec}{(ax+b)}.\cot{(ax+b)}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved