Math Doubts

Derivatives of Trigonometric functions

In differential calculus, there are six derivative formulas to find the differentiation of the trigonometric functions. Each derivative rule is given here with mathematical proof.

Trigonometric formulas

$(1).\,$ $\dfrac{d}{dx}\,\sin{x}$ $\,=\,$ $\cos{x}$

$(2).\,$ $\dfrac{d}{dx}\,\cos{x}$ $\,=\,$ $-\sin{x}$

$(3).\,$ $\dfrac{d}{dx}\,\tan{x}$ $\,=\,$ $\sec^2{x}$

$(4).\,$ $\dfrac{d}{dx}\,\cot{x}$ $\,=\,$ $-\csc^2{x}$ (or) $-\operatorname{cosec}^2{x}$

$(5).\,$ $\dfrac{d}{dx}\,\sec{x}$ $\,=\,$ $\sec{x}.\tan{x}$

$(6).\,$ $\dfrac{d}{dx}\,\csc{x}$ $\,=\,$ $-\csc{x}.\cot{x}$ (or) $-\operatorname{cosec}{x}.\cot{x}$

Multiple angle Trigonometric rules

$(1).\,$ $\dfrac{d}{dx}{\,\sin{(ax)}}$ $\,=\,$ $a\cos{(ax)}$

$(2).\,$ $\dfrac{d}{dx}{\,\cos{(ax)}} \,=\, -a\sin{(ax)}$

$(3).\,$ $\dfrac{d}{dx}{\,\tan{(ax)}} \,=\, a\sec^2{(ax)}$

$(4).\,$ $\dfrac{d}{dx}{\,\cot{(ax)}}$ $\,=\,$ $-a\csc^2{(ax)}$ (or) $-a\operatorname{cosec}^2{(ax)}$

$(5).\,$ $\dfrac{d}{dx}{\,\sec{(ax)}} \,=\, a\sec{(ax)}.\tan{(ax)}$

$(6).\,$ $\dfrac{d}{dx}{\,\csc{(ax)}}$ $\,=\,$ $-a\csc{(ax)}.\cot{(ax)}$ (or) $-a\operatorname{cosec}{(ax)}.\cot{(ax)}$

Compound angle Trigonometric laws

$(1).\,$ $\dfrac{d}{dx}{\,\sin{(ax+b)}}$ $\,=\,$ $a\cos{(ax+b)}$

$(2).\,$ $\dfrac{d}{dx}{\,\cos{(ax+b)}} \,=\, -a\sin{(ax+b)}$

$(3).\,$ $\dfrac{d}{dx}{\,\tan{(ax+b)}} \,=\, a\sec^2{(ax+b)}$

$(4).\,$ $\dfrac{d}{dx}{\,\cot{(ax+b)}}$ $\,=\,$ $-a\csc^2{(ax+b)}$ (or) $-a\operatorname{cosec}^2{(ax+b)}$

$(5).\,$ $\dfrac{d}{dx}{\,\sec{(ax+b)}} \,=\, a\sec{(ax+b)}.\tan{(ax+b)}$

$(6).\,$ $\dfrac{d}{dx}{\,\csc{(ax+b)}}$ $\,=\,$ $-a\csc{(ax+b)}.\cot{(ax+b)}$ (or) $-a\operatorname{cosec}{(ax+b)}.\cot{(ax+b)}$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved