Math Doubts

Definition of the Derivative


$(1) \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, f{(x)}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f{(x+\Delta x)}-f{(x)}}{\Delta x}}$

$(2) \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, f{(x)}}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f{(x+h)}-f{(x)}}{h}}$

It is a formal definition of the derivative of a function in limit form, defined by limiting operation. It is written mathematically in two ways in calculus but they both are same. $\Delta x$ represents the change in variable $x$ (differential) and it is simply denoted by $h$. So, don’t get confused and you can use any one of them to find the derivative of a function in mathematics.

The principle is used as a formula to find the derivative of a function. Therefore, the method of finding derivative of a function by this rule is called in the following three ways in differential calculus.

  1. Derivative by first principle
  2. Differentiation from first principle
  3. ab-initio method of differentiation


If a variable is denoted by $x$, then the function in terms of $x$ is defined as $f{(x)}$ in mathematical form. The derivative of $f{(x)}$ with respect to $x$ is written in mathematics as $\dfrac{d}{dx}{\, f{(x)}}$. It is also written as $\dfrac{d{f{(x)}}}{dx}$ simply.

$\dfrac{d\, f{(x)}}{dx}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f{(x+\Delta x)}-f{(x)}}{\Delta x}}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f{(x+h)}-f{(x)}}{h}}$

Remember, there is no rule to write this formula in terms of $x$ and $f{(x)}$ always. It can be written in terms of any variable and function but principle is same.

$\dfrac{d\, g{(t)}}{dt}$ $\,=\,$ $\displaystyle \large \lim_{\Delta t \,\to\, 0}{\normalsize \dfrac{g{(t+\Delta t)}-g{(t)}}{\Delta t}}$ $\,=\,$ $\displaystyle \large \lim_{z \,\to\, 0}{\normalsize \dfrac{g{(t+z)}-g{(t)}}{z}}$

In this case, $t$ is variable and $g{(t)}$ is a function in terms of $t$. The letter $z$ represents the change in variable $t$.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved