# Limits of Trigonometric functions

There are two standard results in which trigonometric functions are involved and they’re used as rules to find the limits of functions in which trigonometric functions are appeared.

If $x$ is used to represent angle of right triangle, then the trigonometric functions sine and tangent are written as $\sin{x}$ and $\tan{x}$ respectively.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{x}}{x}} \,=\, 1$

The limit of quotient of $\sin{x}$ by $x$ as $x$ approaches $0$ is equal to $1$.

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}} \,=\, 1$

The limit of ratio of $\tan{x}$ to $x$ as $x$ tends to $0$ is equal to $1$.

Latest Math Topics

A best free mathematics education website for students, teachers and researchers.

###### Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

###### Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

###### Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.