# Limits of Trigonometric functions

Let a literal $x$ denotes an angle of right triangle. Then, the trigonometric functions sine, cosine, tangent, cotangent, secant and cosecant are written as $\sin{x}$, $\cos{x}$, $\tan{x}$, $\cot{x}$, $\sec{x}$ and $\csc{x}$ respectively. Now, let’s learn the limits of trigonometric functions with proofs.

### Sine

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \sin{x}}$ $\,=\,$ $0$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \sin{x}}$ $\,=\,$ $Undefined$

### Cosine

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \cos{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \cos{x}}$ $\,=\,$ $Undefined$

### Tangent

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \tan{x}}$ $\,=\,$ $0$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \tan{x}}$ $\,=\,$ $Undefined$

### Co-Tangent

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \cot{x}}$ $\,=\,$ $\infty$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \cot{x}}$ $\,=\,$ $Undefined$

### Secant

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \sec{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \sec{x}}$ $\,=\,$ $Undefined$

### Cosecant

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \csc{x}}$ $\,=\,$ $\infty$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,\pm \infty}{\normalsize \csc{x}}$ $\,=\,$ $Undefined$

## Formulas

$(1).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\sin{x}}{x}}$ $\,=\,$ $1$

$(2).\,\,$ $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\tan{x}}{x}}$ $\,=\,$ $1$

There are two standard limit formulas with trigonometric functions in calculus and examples to learn how to use them in finding the limits of trigonometric functions.

#### Worksheet

$(1).\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sin{(x-1)}}{x^2-1}}$

$(2).\,\,$ $\large \displaystyle \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{(\pi\cos^2{x})}}{x^2}}$

$(3).\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$

The list of limits questions with solutions for practice and to learn how to find the limits of functions in which the trigonometric functions are involved.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.