$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f{(x)}-g{(x)}\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

The limit of subtraction of two functions as the input approaches some value is equal to difference of their limits. It is called as subtraction rule of limits and also called as difference property of limits.

$x$ is a variable and two functions $f{(x)}$ and $g{(x)}$ are developed in terms of $x$. The limits of $f{(x)}$ and $g{(x)}$ as $x$ approaches $a$ are written mathematically as follows.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\,=\,$ $f{(a)}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$ $\,=\,$ $g{(a)}$

Find the limit of subtraction of the functions $f{(x)}$ and $g{(x)}$ as $x$ tends to $a$. In this case, it is taken that the function $g{(x)}$ is subtracted from the function $f{(x)}$.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}-g{(x)}\Big]}$

Substitute $x$ is equal to $a$ to find the limit of subtraction of the function as $x$ approaches $a$.

$\implies \displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}-g{(x)}\Big]}$ $\,=\,$ $f{(a)}-g{(a)}$

Now, replace the values of $f{(a)}$ and $g{(a)}$ in limit form.

$\,\,\, \therefore \,\,\,\,\,\, \displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big[f{(x)}-g{(x)}\Big]}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

Therefore, it is proved that the limit of subtraction of two functions as input approaches some value is equal to difference of their limits. It is used as a formula in calculus to find limit of two functions which are involved in subtraction.

Latest Math Topics

Mar 21, 2023

Feb 25, 2023

Feb 17, 2023

Feb 10, 2023

Jan 15, 2023

Latest Math Problems

Mar 03, 2023

Mar 01, 2023

Feb 27, 2023

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved