Math Doubts

Zero Power Rule


$b^0 \,=\, 1$


The meaning of a number raise to the power zero is to write the number zero times but its value is one.

A mathematical rule that evaluates a quantity with zero exponent is called the zero exponent rule.

Take, $b$ is a literal and $b$ raised to the power of zero is written as $b^0$ in exponential notation. The value of $b$ raised to the power of zero is equal to one.

$b^0 \,=\, 1$

This identity in exponential form is called as zero exponent rule or zero power rule.


In this case, the literal $b$ can be any constant.

$(1).\,\,$ $3^0 \,=\, 1$

$(2).\,\,$ $e^0 \,=\, 1$

$(3).\,\,$ $x^0 \,=\, 1$


Learn how to derive the power rule for zero exponent in algebraic form.


$8^0$ is an exponential term. $8$ is base and zero is its exponent.

The product of one and any exponential term is equal to same exponential term.

$\implies$ $8^0 \,=\, 1 \times 8^0$

Now, write the number $1$ and write the base number $8$ zero times.

$\implies$ $8^0 \,=\, 1$

Therefore, it is verified that any number raised to the power of zero is always equal to one.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved