$b$, $m$ and $n$ are three constants. They formed two exponential terms $b^{\displaystyle \, m}$ and $b^{\displaystyle \, n}$.

$(1) \,\,\,\,\,\,$ $b^{\displaystyle \, m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$

$(2) \,\,\,\,\,\,$ $b^{\displaystyle \, n}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}$

On the basis of this information, let us start deriving the zero exponent rule in algebraic form.

Now, divide the exponential term $b^{\displaystyle \, m}$ by $b^{\displaystyle \, n}$ to find their quotient. It can be evaluated by using the quotient rule of exponents with same base.

$\dfrac{b^{\displaystyle \, m}}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, m-n}$

Take $m-n = 0$, then $m = n$. It expresses that the exponents must be equal to obtain the zero power in the exponential equation.

$\implies$ $\dfrac{b^{\displaystyle \, m}}{b^{\displaystyle \, m}} \,=\, b^0$

The quantities in both numerator and denominator are equal. So, they can be cancelled each other.

$\implies$ $\require{cancel} \dfrac{\cancel{b^{\displaystyle \, m}}}{\cancel{b^{\displaystyle \, m}}} \,=\, b^0$

$\implies$ $1 \,=\, b^0$

$\,\,\, \therefore \,\,\,\,\,\,$ $b^0 \,=\, 1$

It is called zero power rule and it states that the value of zero exponent with any base is equal to one.

Latest Math Topics

Jun 05, 2023

Jun 01, 2023

May 21, 2023

May 16, 2023

May 10, 2023

Latest Math Problems

Jun 08, 2023

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved