$b$, $m$ and $n$ are three constants. They formed two exponential terms $b^{\displaystyle \, m}$ and $b^{\displaystyle \, n}$.

$(1) \,\,\,\,\,\,$ $b^{\displaystyle \, m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$

$(2) \,\,\,\,\,\,$ $b^{\displaystyle \, n}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}$

On the basis of this information, let us start deriving the zero exponent rule in algebraic form.

Now, divide the exponential term $b^{\displaystyle \, m}$ by $b^{\displaystyle \, n}$ to find their quotient. It can be evaluated by using the quotient rule of exponents with same base.

$\dfrac{b^{\displaystyle \, m}}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, m-n}$

Take $m-n = 0$, then $m = n$. It expresses that the exponents must be equal to obtain the zero power in the exponential equation.

$\implies$ $\dfrac{b^{\displaystyle \, m}}{b^{\displaystyle \, m}} \,=\, b^0$

The quantities in both numerator and denominator are equal. So, they can be cancelled each other.

$\implies$ $\require{cancel} \dfrac{\cancel{b^{\displaystyle \, m}}}{\cancel{b^{\displaystyle \, m}}} \,=\, b^0$

$\implies$ $1 \,=\, b^0$

$\,\,\, \therefore \,\,\,\,\,\,$ $b^0 \,=\, 1$

It is called zero power rule and it states that the value of zero exponent with any base is equal to one.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved