Math Doubts

Exponent rules

The quantities are expressed in exponential notation in mathematics for some reasons. For doing some mathematical activities with exponential functions, the fundamental formulas of mathematics may not be useful. Hence, it requires some special properties and they are called the rules of exponents. Now, let’s learn the following three types of exponential properties with proofs to study the indices (or exponents) mathematically.

Product Rules

There are two types of product laws in mathematics and they are used to multiply a quantity in exponential form by another quantity in exponential notation.

$(1).\,\,\,$ $b^{\displaystyle m} \times b^{\displaystyle n} \,=\, b^{\displaystyle \,m+n}$

$(2).\,\,\,$ $b^{\displaystyle m} \times c^{\displaystyle m} \,=\, (b \times c)^{\displaystyle m}$

Quotient Rules

There are two types of division laws in mathematics, they are used to divide a quantity in exponential form by another quantity in exponential form.

$(1).\,\,\,$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}} \,=\, b^{\displaystyle \, m-n}$

$(2).\,\,\,$ $\dfrac{b^{\displaystyle m}}{c^{\displaystyle m}} \,=\, \bigg(\dfrac{b}{c}\bigg)^{\displaystyle m}$

Power Rules

In mathematics, there are six types of power rules to find value of a quantity with exponent.

$(1).\,\,\,$ $\big(b^{\displaystyle m}\big)^{\displaystyle n} \,=\, b^{\displaystyle \, m \times n}$

$(2).\,\,\,$ $b^{\displaystyle -m} \,=\, \dfrac{1}{b^{\displaystyle m}}$

$(3).\,\,\,$ $b^{\dfrac{1}{n}} \,=\, \sqrt[\displaystyle n]{b\,\,}$

$(4).\,\,\,$ $b^{\dfrac{m}{n}} \,=\, \sqrt[\displaystyle n]{b^{\displaystyle m}}$

$(5).\,\,\,$ $b^0 \,=\, 1$

$(6).\,\,\,$ $b^1 \,=\, b$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved