The quantities are expressed in exponential notation in mathematics for some reasons. For doing some mathematical activities with exponential functions, the fundamental formulas of mathematics may not be useful. Hence, it requires some special properties and they are called the rules of exponents. Now, let’s learn the following three types of exponential properties with proofs to study the indices (or exponents) mathematically.

There are two types of product laws in mathematics and they are used to multiply a quantity in exponential form by another quantity in exponential notation.

$(1).\,\,\,$ $b^{\displaystyle m} \times b^{\displaystyle n} \,=\, b^{\displaystyle \,m+n}$

$(2).\,\,\,$ $b^{\displaystyle m} \times c^{\displaystyle m} \,=\, (b \times c)^{\displaystyle m}$

There are two types of division laws in mathematics, they are used to divide a quantity in exponential form by another quantity in exponential form.

$(1).\,\,\,$ $\dfrac{b^{\displaystyle m}}{b^{\displaystyle n}} \,=\, b^{\displaystyle \, m-n}$

$(2).\,\,\,$ $\dfrac{b^{\displaystyle m}}{c^{\displaystyle m}} \,=\, \bigg(\dfrac{b}{c}\bigg)^{\displaystyle m}$

In mathematics, there are six types of power rules to find value of a quantity with exponent.

$(1).\,\,\,$ $\big(b^{\displaystyle m}\big)^{\displaystyle n} \,=\, b^{\displaystyle \, m \times n}$

$(2).\,\,\,$ $b^{\displaystyle -m} \,=\, \dfrac{1}{b^{\displaystyle m}}$

$(3).\,\,\,$ $b^{\dfrac{1}{n}} \,=\, \sqrt[\displaystyle n]{b\,\,}$

$(4).\,\,\,$ $b^{\dfrac{m}{n}} \,=\, \sqrt[\displaystyle n]{b^{\displaystyle m}}$

$(5).\,\,\,$ $b^0 \,=\, 1$

$(6).\,\,\,$ $b^1 \,=\, b$

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.