The integral rule for multiplicative inverse of difference of squares is used as a formula in integral calculus. It can be derived in mathematically by the indefinite integration.
$\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx$
As per the difference of squares formula, the difference of squares of two terms can be factored mathematically.
$\implies$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx$ $\,=\,$ $\displaystyle \int{\dfrac{1}{(x+a)(x-a)}\,}dx$
The function in rational form represents a rational expression that consists of non-repeated linear factors in the denominator. It can be decomposed as the sum of two partial fractions.
$\implies$ $\displaystyle \int{\dfrac{1}{(x+a)(x-a)}\,}dx$ $\,=\,$ $\displaystyle \int{\Bigg(\dfrac{A}{x+a}+\dfrac{B}{x-a}\Bigg)\,}dx$
Substitute $x = -a$, then $A$ $\,=\,$ $\dfrac{1}{-a-a}$ $\,=\,$ $\dfrac{1}{-2a}$ $\,=\,$ $-\dfrac{1}{2a}$
Substitute $x = a$, then $B$ $\,=\,$ $\dfrac{1}{a+a}$ $\,=\,$ $\dfrac{1}{2a}$
Now, replace the values of constants $A$ and $B$ in the expression, which consists of partial fractions.
$\implies$ $\displaystyle \int{\Bigg(\dfrac{A}{x+a}+\dfrac{B}{x-a}\Bigg)\,}dx$ $\,=\,$ $\displaystyle \int{\Bigg(\dfrac{\Big(-\dfrac{1}{2a}\Big)}{x+a}+\dfrac{\Big(\dfrac{1}{2a}\Big)}{x-a}\Bigg)\,}dx$
Now, simplify the algebraic expression in the rational form for evaluating the indefinite integration.
$=\,\,\,$ $\displaystyle \int{\Bigg(\dfrac{-1 \times \Big(\dfrac{1}{2a}\Big)}{x+a}+\dfrac{1 \times \Big(\dfrac{1}{2a}\Big)}{x-a}\Bigg)\,}dx$
In this mathematical expression,the factor $\dfrac{1}{2a}$ is common and it can be taken out from them.
$=\,\,\,$ $\displaystyle \int{\dfrac{1}{2a}\Bigg(\dfrac{-1}{x+a}+\dfrac{1}{x-a}\Bigg)\,}dx$
$=\,\,\,$ $\displaystyle \dfrac{1}{2a} \int{\Bigg(\dfrac{-1}{x+a}+\dfrac{1}{x-a}\Bigg)\,}dx$
$=\,\,\,$ $\displaystyle \dfrac{1}{2a} \int{\Bigg(\dfrac{1}{x-a}-\dfrac{1}{x+a}\Bigg)\,}dx$
$=\,\,\,$ $\displaystyle \dfrac{1}{2a}\Bigg(\int{\dfrac{1}{x-a}\,}dx-\int{\dfrac{1}{x+a}\,}dx\Bigg)$
Take $y = x-a$ and differentiate the equation with respect to $x$.
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\, (x-a)}$
$\implies$ $\dfrac{dy}{dx} \,=\, \dfrac{d}{dx}{\, (x)}-\dfrac{d}{dx}{\, (a)}$
$\implies$ $\dfrac{dy}{dx} \,=\, 1-0$
$\implies$ $\dfrac{dy}{dx} \,=\, 1$
$\implies$ $dy \,=\, 1 \times dx$
$\implies$ $dy \,=\, dx$
$\,\,\, \therefore \,\,\,\,\,\,$ $dx \,=\, dy$
Take $z = x+a$ and differentiate the equation with respect to $x$.
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\, (x+a)}$
$\implies$ $\dfrac{dz}{dx} \,=\, \dfrac{d}{dx}{\, (x)}+\dfrac{d}{dx}{\, (a)}$
$\implies$ $\dfrac{dz}{dx} \,=\, 1+0$
$\implies$ $\dfrac{dz}{dx} \,=\, 1$
$\implies$ $dz \,=\, 1 \times dx$
$\implies$ $dz \,=\, dx$
$\,\,\, \therefore \,\,\,\,\,\,$ $dx \,=\, dz$
Now, transform the terms in the expression in terms of $y$ and $z$.
$\implies$ $\displaystyle \dfrac{1}{2a}\Bigg(\int{\dfrac{1}{x-a}\,}dx-\int{\dfrac{1}{x+a}\,}dx\Bigg)$ $\,=\,$ $\displaystyle \dfrac{1}{2a}\Bigg(\int{\dfrac{1}{y}\,}dy-\int{\dfrac{1}{z}\,}dz\Bigg)$
Use the reciprocal rule of integration to evaluate integral of each multiplicative inverse of variable.
$= \,\,\,$ $\displaystyle \dfrac{1}{2a}\Bigg(\int{\dfrac{1}{y}\,}dy-\int{\dfrac{1}{z}\,}dz\Bigg)$
$= \,\,\,$ $\dfrac{1}{2a}\Big(\log_e{|y|}+c_1-\log_e{|z|}+c_2\Big)$
$= \,\,\,$ $\dfrac{1}{2a}\Big(\log_e{|y|}-\log_e{|z|}+(c_1+c_2)\Big)$
$= \,\,\,$ $\dfrac{1}{2a}\Big(\log_e{|y|}-\log_e{|z|}\Big)$ $+$ $\dfrac{1}{2a}(c_1+c_2)$
The difference of the logarithmic terms can be simplified by the quotient rule of logarithms.
$= \,\,\,$ $\dfrac{1}{2a}\Big(\log_e{\Bigg|\dfrac{y}{z}\Bigg|}\Big)$ $+$ $\dfrac{c_1+c_2}{2a}$
$= \,\,\,$ $\dfrac{1}{2a}\log_e{\Bigg|\dfrac{y}{z}\Bigg|}+c$
Actually, we have taken that $y = x-a$ and $z = x+a$ in the expression.
$= \,\,\,$ $\dfrac{1}{2a}\log_e{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$
$\therefore \,\,\,$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx \,=\, \dfrac{1}{2a}\ln{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved