Math Doubts

Integration formulas

There are some fundamental integral rules and they are used as formulas in integral calculus. So, learn each formula with proof for studying the integral calculus clearly.

Algebraic functions

The list of integration formulas for the algebraic functions with proofs.

$(1)\,\,\,$ $\displaystyle \int{x^n\,}dx \,=\, \dfrac{x^{n+1}}{n+1}+c$

$(2)\,\,\,$ $\displaystyle \int{a^x\,}dx \,=\, \dfrac{a^x}{\log_e{|a|}}+c$

$(3)\,\,\,$ $\displaystyle \int{e^x\,}dx \,=\, e^x+c$

$(4)\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx \,=\, \log_e{|x|}+c$

$(5)\,\,\,$ $\displaystyle \int{\dfrac{1}{ax\pm b}\,}dx \,=\, \dfrac{1}{a}\log_e{|ax\pm b|}+c$

Trigonometric functions

The list of integration formulas for the trigonometric functions with proofs.

$(1)\,\,\,$ $\displaystyle \int{\sin{x}\,}dx \,=\, -\cos{x}+c$

$(2)\,\,\,$ $\displaystyle \int{\cos{x}\,}dx \,=\, \sin{x}+c$

$(3)\,\,\,$ $\displaystyle \int{\tan{x}\,}dx \,=\, -\log_e{|\cos{x}|}+c$

$(4)\,\,\,$ $\displaystyle \int{\cot{x}\,}dx \,=\, \log_e{|\sin{x}|}+c$

$(5)\,\,\,$ $\displaystyle \int{\sec^2{x}\,}dx \,=\, \tan{x}+c$

$(6)\,\,\,$ $\displaystyle \int{\csc^2{x}\,}dx \,=\, -\cot{x}+c$

$(7)\,\,\,$ $\displaystyle \int{\sec{x}\tan{x}\,}dx \,=\, \sec{x}+c$

$(8)\,\,\,$ $\displaystyle \int{\csc{x}\cot{x}\,}dx \,=\, -\csc{x}+c$

Hyperbolic functions

The list of integration formulas for the hyperbolic functions with proofs.

$\Large \int \normalsize \sinh{x} dx = \cosh{x}+C$

$\Large \int \normalsize \cosh{x} dx = \sinh{x}+C$

$\Large \int \normalsize \tanh{x} dx = \log_{e}{|\cosh{x}|}+C$

$\Large \int \normalsize \coth{x} dx = \log_{e}{|\sinh{x}|}+C$

$\Large \int \normalsize \operatorname{sech}{x} dx = 2\tan^{-1}{(e^x)}+C$

$\Large \int \normalsize \operatorname{csch}{x} dx = 2\cosh^{-1}{(e^x)}+C$

$\Large \int \normalsize \sec^2h{x} dx = \tanh{x}+C$

$\Large \int \normalsize \csc^2h{x} dx = -\cot{x}+C$

$\Large \int \normalsize \operatorname{sech}{x}\tanh{x} dx = -\operatorname{sech}{x}+C$

$\Large \int \normalsize \operatorname{csch}{x}\coth{x} dx = -\csc{x}+C$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved