There are some fundamental integral rules and they are used as formulas in integral calculus. So, learn each formula with proof for studying the integral calculus clearly.
The list of integration formulas for the algebraic functions with proofs.
$(1)\,\,\,$ $\displaystyle \int{x^n\,}dx \,=\, \dfrac{x^{n+1}}{n+1}+c$
$(2)\,\,\,$ $\displaystyle \int{a^x\,}dx \,=\, \dfrac{a^x}{\log_e{|a|}}+c$
$(3)\,\,\,$ $\displaystyle \int{e^x\,}dx \,=\, e^x+c$
$(4)\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx \,=\, \log_e{|x|}+c$
$(5)\,\,\,$ $\displaystyle \int{\dfrac{1}{ax\pm b}\,}dx \,=\, \dfrac{1}{a}\log_e{|ax\pm b|}+c$
The list of integration formulas for the trigonometric functions with proofs.
$(1)\,\,\,$ $\displaystyle \int{\sin{x}\,}dx \,=\, -\cos{x}+c$
$(2)\,\,\,$ $\displaystyle \int{\cos{x}\,}dx \,=\, \sin{x}+c$
$(3)\,\,\,$ $\displaystyle \int{\tan{x}\,}dx \,=\, -\log_e{|\cos{x}|}+c$
$(4)\,\,\,$ $\displaystyle \int{\cot{x}\,}dx \,=\, \log_e{|\sin{x}|}+c$
$(5)\,\,\,$ $\displaystyle \int{\sec^2{x}\,}dx \,=\, \tan{x}+c$
$(6)\,\,\,$ $\displaystyle \int{\csc^2{x}\,}dx \,=\, -\cot{x}+c$
$(7)\,\,\,$ $\displaystyle \int{\sec{x}\tan{x}\,}dx \,=\, \sec{x}+c$
$(8)\,\,\,$ $\displaystyle \int{\csc{x}\cot{x}\,}dx \,=\, -\csc{x}+c$
The list of integration formulas for the hyperbolic functions with proofs.
$\Large \int \normalsize \sinh{x} dx = \cosh{x}+C$
$\Large \int \normalsize \cosh{x} dx = \sinh{x}+C$
$\Large \int \normalsize \tanh{x} dx = \log_{e}{|\cosh{x}|}+C$
$\Large \int \normalsize \coth{x} dx = \log_{e}{|\sinh{x}|}+C$
$\Large \int \normalsize \operatorname{sech}{x} dx = 2\tan^{-1}{(e^x)}+C$
$\Large \int \normalsize \operatorname{csch}{x} dx = 2\cosh^{-1}{(e^x)}+C$
$\Large \int \normalsize \sec^2h{x} dx = \tanh{x}+C$
$\Large \int \normalsize \csc^2h{x} dx = -\cot{x}+C$
$\Large \int \normalsize \operatorname{sech}{x}\tanh{x} dx = -\operatorname{sech}{x}+C$
$\Large \int \normalsize \operatorname{csch}{x}\coth{x} dx = -\csc{x}+C$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2021 Math Doubts, All Rights Reserved