Math Doubts

Integration formulas

There are some fundamental integral rules and they are used as formulas in integral calculus. So, learn each formula with proof for studying the integral calculus clearly.

Algebraic functions

The list of integration formulas for the algebraic functions with proofs.

$(1)\,\,\,$ $\displaystyle \int{x^n\,}dx \,=\, \dfrac{x^{n+1}}{n+1}+c$

$(2)\,\,\,$ $\displaystyle \int{a^x\,}dx \,=\, \dfrac{a^x}{\log_e{|a|}}+c$

$(3)\,\,\,$ $\displaystyle \int{e^x\,}dx \,=\, e^x+c$

$(4)\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx \,=\, \log_e{|x|}+c$

$(5)\,\,\,$ $\displaystyle \int{\dfrac{1}{ax\pm b}\,}dx \,=\, \dfrac{1}{a}\log_e{|ax\pm b|}+c$

Trigonometric functions

The list of integration formulas for the trigonometric functions with proofs.

$(1)\,\,\,$ $\displaystyle \int{\sin{x}\,}dx \,=\, -\cos{x}+c$

$(2)\,\,\,$ $\displaystyle \int{\cos{x}\,}dx \,=\, \sin{x}+c$

$(3)\,\,\,$ $\displaystyle \int{\tan{x}\,}dx \,=\, -\log_e{|\cos{x}|}+c$

$(4)\,\,\,$ $\displaystyle \int{\cot{x}\,}dx \,=\, \log_e{|\sin{x}|}+c$

$(5)\,\,\,$ $\displaystyle \int{\sec^2{x}\,}dx \,=\, \tan{x}+c$

$(6)\,\,\,$ $\displaystyle \int{\csc^2{x}\,}dx \,=\, -\cot{x}+c$

$(7)\,\,\,$ $\displaystyle \int{\sec{x}\tan{x}\,}dx \,=\, \sec{x}+c$

$(8)\,\,\,$ $\displaystyle \int{\csc{x}\cot{x}\,}dx \,=\, -\csc{x}+c$

Hyperbolic functions

The list of integration formulas for the hyperbolic functions with proofs.

$\Large \int \normalsize \sinh{x} dx = \cosh{x}+C$

$\Large \int \normalsize \cosh{x} dx = \sinh{x}+C$

$\Large \int \normalsize \tanh{x} dx = \log_{e}{|\cosh{x}|}+C$

$\Large \int \normalsize \coth{x} dx = \log_{e}{|\sinh{x}|}+C$

$\Large \int \normalsize \operatorname{sech}{x} dx = 2\tan^{-1}{(e^x)}+C$

$\Large \int \normalsize \operatorname{csch}{x} dx = 2\cosh^{-1}{(e^x)}+C$

$\Large \int \normalsize \sec^2h{x} dx = \tanh{x}+C$

$\Large \int \normalsize \csc^2h{x} dx = -\cot{x}+C$

$\Large \int \normalsize \operatorname{sech}{x}\tanh{x} dx = -\operatorname{sech}{x}+C$

$\Large \int \normalsize \operatorname{csch}{x}\coth{x} dx = -\csc{x}+C$

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more