$\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx \,=\, \dfrac{1}{2a}\log_e{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$

Let $x$ represents a variable and $a$ represents a constant. The subtraction of square of $a$ from $x$ squared is written as $x^2-a^2$ in mathematics. The multiplicative inverse of the difference of them is written in the following mathematical form.

$\dfrac{1}{x^2-a^2}$

The indefinite integral of this rational expression with respect to $x$ is written in calculus as follows.

$\implies$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx$

The indefinite integration of this rational function is equal to product of the reciprocal of the two times the constant and the natural logarithm of the quotient of the difference by sum of them.

$\implies$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx \,=\, \dfrac{1}{2a}\ln{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$

The indefinite integral formula for multiplicative inverse of the difference of squares can be written in terms of any two literals.

$(1) \,\,\,$ $\displaystyle \int{\dfrac{1}{y^2-m^2}\,}dy \,=\, \dfrac{1}{2m}\log_e{\Bigg|\dfrac{y-m}{y+m}\Bigg|}+c$

$(2) \,\,\,$ $\displaystyle \int{\dfrac{1}{l^2-d^2}\,}dl \,=\, \dfrac{1}{2d}\log_e{\Bigg|\dfrac{l-d}{l+d}\Bigg|}+c$

$(3) \,\,\,$ $\displaystyle \int{\dfrac{1}{z^2-f^2}\,}dz \,=\, \dfrac{1}{2f}\log_e{\Bigg|\dfrac{z-f}{z+f}\Bigg|}+c$

Evaluate $\displaystyle \int{\dfrac{1}{x^2-3^2}\,}dx$

Take $a = 3$ and substitute it in the integral property.

$=\,\,\,$ $\dfrac{1}{2 \times 3}\log_e{\Bigg|\dfrac{x-3}{x+3}\Bigg|}+c$

$=\,\,\,$ $\dfrac{1}{6}\log_e{\Bigg|\dfrac{x-3}{x+3}\Bigg|}+c$

Learn how to derive the indefinite integration rule for multiplicative inverse of difference of squares.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.