Math Doubts

Integration Rules

Properties

$\displaystyle \int udv$ $\,=\,$ $uv$ $-$ $\displaystyle \int vdu$

Formulas

There are some standard results formed by some functions in integral calculus

Integration of Algebraic functions

$\Large \int \normalsize x^n dx = \dfrac{x^{n+1}}{n+1}+c$

$\Large \int \normalsize \dfrac{1}{x} dx = \log{x}+c$

$\Large \int \normalsize a^x dx = \dfrac{a^x}{\log{a}}+c$

$\Large \int \normalsize e^x dx = e^x+c$

Integration of Trigonometric functions

$\Large \int \normalsize \sin{x} dx = -\cos{x}+c$

$\Large \int \normalsize \cos{x} dx = \sin{x}+c$

$\Large \int \normalsize \tan{x} dx = -\log{(\cos{x})}+c$

$\Large \int \normalsize \cot{x} dx = \log{(\sin{x})}+c$

$\Large \int \normalsize \sec^2{x} dx = \tan{x}+c$

$\Large \int \normalsize \csc^2{x} dx = -\cot{x}+c$

$\Large \int \normalsize \sec{x}\tan{x} dx = \sec{x}+c$

$\Large \int \normalsize \csc{x}\cot{x} dx = -\csc{x}+c$

Integration of Hyperbolic functions

$\Large \int \normalsize \sinh{x} dx = \cosh{x}+c$

$\Large \int \normalsize \cosh{x} dx = \sinh{x}+c$

$\Large \int \normalsize \tanh{x} dx = \log_{e}{|\cosh{x}|}+c$

$\Large \int \normalsize \coth{x} dx = \log_{e}{|\sinh{x}|}+c$

$\Large \int \normalsize \operatorname{sech}{x} dx = 2\tan^{-1}{(e^x)}+c$

$\Large \int \normalsize \operatorname{csch}{x} dx = 2\cosh^{-1}{(e^x)}+c$

$\Large \int \normalsize \sec^2h{x} dx = \tanh{x}+c$

$\Large \int \normalsize \csc^2h{x} dx = -\cot{x}+c$

$\Large \int \normalsize \operatorname{sech}{x}\tanh{x} dx = -\operatorname{sech}{x}+c$

$\Large \int \normalsize \operatorname{csch}{x}\coth{x} dx = -\csc{x}+c$



Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more