Math Doubts

Power Law of Limit


$\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

It is a property of power rule, used to find the limit of an exponential function whose base and exponent are in a function form.


$x$ is a variable and two functions $f{(x)}$ and $g{(x)}$ are defined in terms of $x$. The limits of $f{(x)}$ and $g{(x)}$ as $x$ closer to $a$ are written mathematically in calculus as follows.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\,=\,$ $f{(a)}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$ $\,=\,$ $g{(a)}$

Limit of Functions in Exponential form

Assume, the functions $f{(x)}$ and $g{(x)}$ are formed a function in exponential form.


Now, find the limit of this exponential function as $x$ approaches $a$.

$\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$

Find the limit of the function

Find the limit of the exponential function by substituting $x$ by $a$.

$= \,\,\, {f{(a)}}^{g{(a)}}$

Get Power Rule of Limit

The limits of functions $f{(x)}$ and $g{(x)}$ as $x$ tends to $a$ are $f{(a)}$ and $g{(a)}$ respectively. Therefore, it can be written that $f{(a)}$ and $g{(a)}$ as the limits of functions $f{(x)}$ and $g{(x)}$ respectively.

$\implies {f{(a)}}^{g{(a)}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

Actually, the value of $f{(a)}$ is raised to the power of $g{(a)}$ is determined as the limit of the $f{(x)}$ is raised to the power of $g{(x)}$ as $x$ closer to $a$.

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

Therefore, the limit property is proved that the limit of $f{(x)}$ is raised to the power of $g{(x)}$ as $x$ approaches $a$ equals to the limit of $f{(x)}$ as $x$ approaches $a$ is raised to the power of the limit of $g{(x)}$ as $x$ closer to $a$.

The limit rule is completely in exponential notation. So, it is called as the power rule of limit in calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved