Math Doubts

Power Law of Limit

Formula

$\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

It is a property of power rule, used to find the limit of an exponential function whose base and exponent are in a function form.

Proof

$x$ is a variable and two functions $f{(x)}$ and $g{(x)}$ are defined in terms of $x$. The limits of $f{(x)}$ and $g{(x)}$ as $x$ closer to $a$ are written mathematically in calculus as follows.

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\,=\,$ $f{(a)}$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$ $\,=\,$ $g{(a)}$

Limit of Functions in Exponential form

Assume, the functions $f{(x)}$ and $g{(x)}$ are formed a function in exponential form.

${f{(x)}}^{g{(x)}}$

Now, find the limit of this exponential function as $x$ approaches $a$.

$\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$

Find the limit of the function

Find the limit of the exponential function by substituting $x$ by $a$.

$= \,\,\, {f{(a)}}^{g{(a)}}$

Get Power Rule of Limit

The limits of functions $f{(x)}$ and $g{(x)}$ as $x$ tends to $a$ are $f{(a)}$ and $g{(a)}$ respectively. Therefore, it can be written that $f{(a)}$ and $g{(a)}$ as the limits of functions $f{(x)}$ and $g{(x)}$ respectively.

$\implies {f{(a)}}^{g{(a)}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

Actually, the value of $f{(a)}$ is raised to the power of $g{(a)}$ is determined as the limit of the $f{(x)}$ is raised to the power of $g{(x)}$ as $x$ closer to $a$.

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{g{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \, {\normalsize {f{(x)}}^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize g{(x)}}}}$

Therefore, the limit property is proved that the limit of $f{(x)}$ is raised to the power of $g{(x)}$ as $x$ approaches $a$ equals to the limit of $f{(x)}$ as $x$ approaches $a$ is raised to the power of the limit of $g{(x)}$ as $x$ closer to $a$.

The limit rule is completely in exponential notation. So, it is called as the power rule of limit in calculus.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved