# Exponential Limits Problems and Solutions

The functions in exponential notation are involved in limits problems. Firstly, we must learn the standard exponential limits formulas for evaluating the limits of the functions in which either exponential functions or power functions or combination of both types of functions are involved. Here is a worksheet with list of example exponential limits questions for your practice and also solutions in different possible methods to learn how to calculate the limits of exponential functions in calculus.

Evaluate $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \dfrac{e^x}{\Big(1+\dfrac{1}{x}\Big)^{x^2}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{x\cos{x}}}{x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize (1+\sin{x})^{\Large \frac{1}{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(e^{-3x+2}-e^2)\sin{\pi x}}{4x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \sqrt[x^3]{1-x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{2^x-1}{\sqrt{1+x}-1}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {\Bigg(\dfrac{5x^2+1}{3x^2+1}\Bigg)}^\dfrac{1}{x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{5^x+5^{-x}-2}{x^2}}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.