The functions in exponential notation are involved in limits problems. Firstly, we must learn the standard exponential limits formulas for evaluating the limits of the functions in which either exponential functions or power functions or combination of both types of functions are involved. Here is a worksheet with list of example exponential limits questions for your practice and also solutions in different possible methods to learn how to calculate the limits of exponential functions in calculus.

Evaluate $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize \dfrac{e^x}{\Big(1+\dfrac{1}{x}\Big)^{x^2}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{x\cos{x}}}{x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize (1+\sin{x})^{\Large \frac{1}{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(e^{-3x+2}-e^2)\sin{\pi x}}{4x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \sqrt[x^3]{1-x+\sin{x}}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{2^x-1}{\sqrt{1+x}-1}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {\Bigg(\dfrac{5x^2+1}{3x^2+1}\Bigg)}^\dfrac{1}{x^2}}$

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{5^x+5^{-x}-2}{x^2}}$

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved