$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x}}$ $\,=\,$ $\log_{e}{a}$

If $a$ is a constant and $x$ is a variable, then quotient of subtraction one from $a$ raised to the power of $x$ by $x$ is written as $\dfrac{a^x-1}{x}$ and the limit of this special exponential function is written mathematically as follows.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x}}$

The limit of this special exponential function is equal to natural logarithm of $a$. It’s used as a formula in finding the limits of exponential functions in calculus.

This standard result in limits can be written in several ways in calculus.

$(1) \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{c^{\displaystyle \normalsize y}-1}{y}}$ $\,=\,$ $\ln{(c)}$

$(2) \,\,\,$ $\displaystyle \large \lim_{u \,\to\, 0}{\normalsize \dfrac{m^{\displaystyle \normalsize u}-1}{u}}$ $\,=\,$ $\ln{(m)}$

Let’s prove the limit of quotient of difference of $a^x$ and $1$ by $x$ as $x$ approaches $0$ is equal to natural logarithm of $a$.

Latest Math Topics

Latest Math Problems

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved