In integral calculus, some functions are formed with exponential functions. For calculating the integrals of such functions, some special rules are required. The following is the list of integration formulas with proofs for finding the integration of the functions in which the exponential functions are involved.

$\displaystyle \int{a^{\displaystyle x}\,}dx$ $\,=\,$ $\dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$

The integral of the exponential function is equal to the sum of the quotient of exponential function by the natural logarithm of the base and the integral constant.

$\displaystyle \int{e^{\displaystyle x}\,}dx$ $\,=\,$ $e^{\displaystyle x}+c$

The integral of the natural exponential function is equal to the sum of the natural exponential function and the integral constant.

List of the integral problems with solutions to learn how to use the integral rules of exponential functions to find the integrals of the functions in which exponential functions are involved.

Latest Math Topics

Nov 11, 2022

Nov 03, 2022

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved