$\displaystyle \int{e^{\displaystyle x} \,}dx \,=\, e^{\displaystyle x}+c$

$x$ is a variable and the natural exponential function is written in mathematical form as $e^{\displaystyle x}$. The integration of $e^{\displaystyle x}$ with respect to $x$ is written in differential calculus as follows.

$\displaystyle \int{e^{\displaystyle x} \,}dx$

The indefinite integral of $e^{\displaystyle x}$ with respect to $x$ is equal to the sum of the natural exponential function and constant of integration.

$\displaystyle \int{e^{\displaystyle x} \,}dx \,=\, e^{\displaystyle x}+c$

The indefinite integration of natural exponential function formula can be written in terms of any variable.

$(1) \,\,\,$ $\displaystyle \int{e^{\displaystyle m} \,}dm \,=\, e^{\displaystyle m}+c$

$(2) \,\,\,$ $\displaystyle \int{e^{\displaystyle t} \,}dt \,=\, e^{\displaystyle t}+c$

$(3) \,\,\,$ $\displaystyle \int{e^{\displaystyle y} \,}dy \,=\, e^{\displaystyle y}+c$

Learn how to derive the indefinite integration rule for the natural exponential function in integral calculus.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.