$\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$

$a^{\displaystyle x}$ is an exponential function, where $a$ is a constant and $x$ is a variable. The integration of $a^{\displaystyle x}$ with respect to $x$ is expressed in mathematical form as follows.

$\displaystyle \int{a^{\displaystyle x} \,}dx$

The indefinite integral of $e^{\displaystyle x}$ with respect to $x$ is equal to the sum of the natural exponential function and constant of integration.

$\displaystyle \int{e^{\displaystyle x} \,}dx \,=\, e^{\displaystyle x}+c$

The indefinite integration of natural exponential function formula can be written in terms of any variable.

$(1) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$

$(2) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$

$(3) \,\,\,$ $\displaystyle \int{a^{\displaystyle x} \,}dx \,=\, \dfrac{a^{\displaystyle x}}{\log_{e}{a}}+c$

Learn how to derive the indefinite integration rule for the natural exponential function in integral calculus.

Latest Math Topics

Jul 20, 2023

Jun 26, 2023

Jun 23, 2023

Latest Math Problems

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved