There are three types of algebraic integral rules in integral calculus. They are used as formulas in calculating both indefinite and definite integrals of the algebraic functions. So, let’s learn each algebraic integration formula with proof to know how to use them in indefinite and definite integration problems.

$\displaystyle \int{x^n\,}dx$ $\,=\,$ $\dfrac{x^{n+1}}{n+1}+c$

The following two exponential integral rules are the integration formulae in which the algebraic functions are in exponential form.

$(1).\,\,\,$ $\displaystyle \int{a^x\,}dx$ $\,=\,$ $\dfrac{a^x}{\log_{e}{a}}+c$

$(2).\,\,\,$ $\displaystyle \int{e^x\,}dx$ $\,=\,$ $e^x+c$

The following six reciprocal integral rules are the integration formulas in which the algebraic functions are in multiplicative inverse form.

$(1).\,\,\,$ $\displaystyle \int{\dfrac{1}{x}\,}dx$ $\,=\,$ $\log_{e}{x}+c$

$(2).\,\,\,$ $\displaystyle \int{\dfrac{1}{1+x^2}\,}dx$ $\,=\,$ $\arctan{x}+c$ (or) $\tan^{-1}{x}+c$

$(3).\,\,\,$ $\displaystyle \int{\dfrac{1}{x^2-a^2}\,}dx$ $\,=\,$ $\dfrac{1}{2a}\log_{e}{\Bigg|\dfrac{x-a}{x+a}\Bigg|}+c$

$(4).\,\,\,$ $\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$ $\,=\,$ $\dfrac{1}{a}\arctan{\Big(\dfrac{x}{a}\Big)}+c$ (or) $\dfrac{1}{a}\tan^{-1}{\Big(\dfrac{x}{a}\Big)}+c$

$(5).\,\,\,$ $\displaystyle \int{\dfrac{1}{\sqrt{1-x^2}}\,}dx$ $\,=\,$ $\arcsin{x}+c$ (or) $\sin^{-1}{x}+c$

$(6).\,\,\,$ $\displaystyle \int{\dfrac{1}{|x|\sqrt{x^2-1}}\,}dx$ $\,=\,$ $\operatorname{arcsec}{x}+c$ (or) $\sec^{-1}{x}+c$

List of the problems to learn how to find the integrals of the algebraic functions by the integration rules.

Latest Math Topics

May 21, 2023

May 16, 2023

May 10, 2023

May 03, 2023

Latest Math Problems

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved