Let $x$ represents a variable, $n$ and $k$ represent constants. An algebraic expression $x^{n+1}+k$ is formed by the literals. Now, let’s derive the power rule of integration mathematically in integral calculus.

The algebraic expression is defined in terms of $x$. So, it should be differentiated with respect to $x$ and it can be expressed in mathematical form as follows.

$\dfrac{d}{dx}{\,\Big(x^{n+1}+k\Big)}$

The algebraic expression is expressed in $x$. Hence, differentiate the algebraic expression with respect to $x$ for evaluating its derivative.

$\implies$ $\dfrac{d}{dx}{\,\Big(x^{n+1}+k\Big)}$ $\,=\,$ $\dfrac{d}{dx}{\,\Big(x^{n+1}\Big)}$ $+$ $\dfrac{d}{dx}{\,(k)}$

The derivative of the first term can be evaluated by the power rule of differentiation and the derivative of the second term is zero as per the constant rule of differentiation.

$\implies$ $\dfrac{d}{dx}{\,\Big(x^{n+1}+k\Big)}$ $\,=\,$ $(n+1) \times x^{n+1-1}+0$

$\implies$ $\require{cancel} \dfrac{d}{dx}{\,\Big(x^{n+1}+k\Big)}$ $\,=\,$ $(n+1) \times x^{n+\cancel{1}-\cancel{1}}$

$\implies$ $\dfrac{d}{dx}{\,\Big(x^{n+1}+k\Big)}$ $\,=\,$ $(n+1)x^n$

It is evaluated that the derivative of the expression $x^{n+1}+k$ is $(n+1)x^n$. According to the inverse operation, the primitive or an anti-derivative of expression $(n+1)x^n$ is equal to $x^{n+1}+k$. It can be written in mathematical form as follows.

$\displaystyle \int{(n+1)x^n\,}dx$ $\,=\,$ $x^{n+1}+k$

The constant factor $n+1$ can be separated from the integral operation by the constant multiple rule of integration.

$\implies$ $(n+1) \times \displaystyle \int{x^n\,}dx$ $\,=\,$ $x^{n+1}+k$

Now, let us simplify the mathematical equation.

$\implies$ $\displaystyle \int{x^n\,}dx$ $\,=\,$ $\dfrac{x^{n+1}+k}{n+1}$

$\implies$ $\displaystyle \int{x^n\,}dx$ $\,=\,$ $\dfrac{x^{n+1}}{n+1}$ $+$ $\dfrac{k}{n+1}$

In the right hand side expression of the equation, the first term is a function in $x$ but the second term is a constant. So, it can be simply denoted by a constant $c$, which is known as the constant of integration.

$\,\,\,\therefore\,\,\,\,\,\,$ $\displaystyle \int{x^n\,}dx$ $\,=\,$ $\dfrac{x^{n+1}}{n+1}+c$

Thus, the power rule of integration is derived mathematically in differential calculus.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved