Math Doubts

Antiderivative

A differentiable function whose derivative is equal to the original function, is called an antiderivative of a function. The antiderivative of a function is also called as a primitive of a function.

Introduction

$f{(x)}$ is a function and $p{(x)}$ is a differentiable function. Assume, the derivative of a function $p{(x)}$ is equal to $f{(x)}$ and $C$ is a constant.

$\dfrac{d}{dx}{\Big(p{(x)}+C\Big)}$ $\,=\,$ $f{(x)}$

$\implies$ $p'{(x)} \,=\, f{(x)}$

The function $p{(x)}$ is called an antiderivative of function $f{(x)}$.

Example

$\dfrac{x^3}{3}$ is a function and $x^2$ is another function. Now, differentiate the function $\dfrac{x^3}{3}$ with a constant.

$\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{d}{dx}{\dfrac{x^3}{3}}+\dfrac{d}{dx}{\,C}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times \dfrac{d}{dx}{x^3}+0$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^{3-1}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^2$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{3x^2}{3}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\require{cancel} \dfrac{\cancel{3}x^2}{\cancel{3}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $x^2$

Therefore, the function $\dfrac{x^3}{3}$ is called a primitive or antiderivative of the function $x^2$.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved