Math Doubts

Antiderivative

A differentiable function whose derivative is equal to the original function, is called an antiderivative of a function. The antiderivative of a function is also called as a primitive of a function.

Introduction

$f{(x)}$ is a function and $p{(x)}$ is a differentiable function. Assume, the derivative of a function $p{(x)}$ is equal to $f{(x)}$ and $C$ is a constant.

$\dfrac{d}{dx}{\Big(p{(x)}+C\Big)}$ $\,=\,$ $f{(x)}$

$\implies$ $p'{(x)} \,=\, f{(x)}$

The function $p{(x)}$ is called an antiderivative of function $f{(x)}$.

Example

$\dfrac{x^3}{3}$ is a function and $x^2$ is another function. Now, differentiate the function $\dfrac{x^3}{3}$ with a constant.

$\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{d}{dx}{\dfrac{x^3}{3}}+\dfrac{d}{dx}{\,C}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times \dfrac{d}{dx}{x^3}+0$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^{3-1}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{1}{3} \times 3x^2$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\dfrac{3x^2}{3}$

$\implies$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $\require{cancel} \dfrac{\cancel{3}x^2}{\cancel{3}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\Big(\dfrac{x^3}{3}+C\Big)}$ $\,=\,$ $x^2$

Therefore, the function $\dfrac{x^3}{3}$ is called a primitive or antiderivative of the function $x^2$.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved