$\dfrac{d}{dx}{\, (x^{\displaystyle n})}$ $\,=\,$ $n.x^{\, \displaystyle n\small -1}$

The derivative of an exponential term, which contains a variable as base and a constant as power, is called the constant power derivative rule.

$x$ and $n$ are literals and they represent a variable and a constant. They form an exponential term $x^n$. The derivative of $x$ is raised to the power $n$ is written in mathematical form as follows.

$\dfrac{d}{dx}{\, (x^{\displaystyle n})}$

The differentiation of $n$-th power of $x$ with respect to $x$ is equal to the product of $n$ and $x$ raised to the power of $n$ minus one.

$\dfrac{d}{dx}{\, (x^{\displaystyle n})}$ $\,=\,$ $n.x^{\, \displaystyle n\small -1}$

The derivative of a constant power rule can be written in terms of any variable and constant.

$(1) \,\,\,\,\,\,$ $\dfrac{d}{dh}{\, (h^{\displaystyle c})}$ $\,=\,$ $c.h^{\, \displaystyle c\small -1}$

$(2) \,\,\,\,\,\,$ $\dfrac{d}{dl}{\, (l^{\displaystyle m})}$ $\,=\,$ $m.l^{\, \displaystyle m\small -1}$

$(3) \,\,\,\,\,\,$ $\dfrac{d}{dy}{\, (y^{\displaystyle p})}$ $\,=\,$ $p.y^{\, \displaystyle p\small -1}$

Learn how to prove the derivative of a constant power rule in differential calculus by first principle.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved