Math Doubts

Proof of Integral of Natural Exponential function

Assume, $x$ is a variable and the natural exponential function is written as $e^{\displaystyle x}$ in mathematics. The indefinite integration of natural exponential function with respect to $x$ is written in the following mathematical form in integral calculus.

$\displaystyle \int{e^{\displaystyle x} \,}dx$

Now, let us learn how to derive the proof for the integration rule of the natural exponential function.

Derivative of Natural exponential function

Write the formula for the derivative of natural exponential function with respect to $x$ in mathematical form.

$\dfrac{d}{dx}{\, (e^{\displaystyle x})} \,=\, e^{\displaystyle x}$

Inclusion of an Arbitrary constant

Include a constant to natural exponential function but it does not change the differentiation of sum of natural exponential function and constant because the derivative of a constant is zero.

$\implies$ $\dfrac{d}{dx}{\, (e^{\displaystyle x}+c)} \,=\, e^{\displaystyle x}$

Integration of Natural exponential function

According to the integration, the collection of all primitives of $e^{\displaystyle x}$ function is called the integration of $e^{\displaystyle x}$ function with respect to $x$. It is expressed in mathematics as follows.

$\displaystyle \int{e^{\displaystyle x} \,}dx$

The antiderivative or primitive of $e^{\displaystyle x}$ function is sum of the natural exponential function and the constant of integration ($c$).

$\dfrac{d}{dx}{(e^{\displaystyle x}+c)} = e^{\displaystyle x}$ $\,\Longleftrightarrow\,$ $\displaystyle \int{e^{\displaystyle x} \,}dx = e^{\displaystyle x}+c$

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{e^{\displaystyle x} \,}dx \,=\, e^{\displaystyle x}+c$

Therefore, it has proved that the integration of natural exponential function with respect to a variable is equal to the sum of the natural exponential function and the constant of integration.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved