$\dfrac{d}{dx}{\, (e^{\displaystyle x})} \,=\, e^{\displaystyle x}$

The differentiation of natural exponential function is equal to natural exponential function. It is read as the derivative of $e$ raised to the power of $x$ with respect to $x$ is equal to $e^{\displaystyle x}$.

Assume, $x$ is a variable, then the natural exponential function is written as $e^{\displaystyle x}$ in mathematical form. The derivative of the $e^{\displaystyle x}$ function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, (e^{\displaystyle x})}$

In differential calculus, the derivative of the $e^{\displaystyle x}$ function with respect to $x$ is also written as $\dfrac{d{\,(e^{\displaystyle x})}}{dx}$ and is also written as ${(e^{\displaystyle x})}’$ in simple mathematical form.

The derivative of the natural exponential function can be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{dq}{\, (e^{\displaystyle q})} \,=\, e^{\displaystyle q}$

$(2) \,\,\,$ $\dfrac{d}{dt}{\, (e^{\displaystyle t})} \,=\, e^{\displaystyle t}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (e^{\displaystyle y})} \,=\, e^{\displaystyle y}$

Learn how to derive the differentiation of the natural exponential function from first principle in differential calculus.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved