$\dfrac{d}{dx}{\, (e^{\displaystyle x})} \,=\, e^{\displaystyle x}$

The differentiation of natural exponential function is equal to natural exponential function. It is read as the derivative of $e$ raised to the power of $x$ with respect to $x$ is equal to $e^{\displaystyle x}$.

Assume, $x$ is a variable, then the natural exponential function is written as $e^{\displaystyle x}$ in mathematical form. The derivative of the $e^{\displaystyle x}$ function with respect to $x$ is written in the following mathematical form.

$\dfrac{d}{dx}{\, (e^{\displaystyle x})}$

In differential calculus, the derivative of the $e^{\displaystyle x}$ function with respect to $x$ is also written as $\dfrac{d{\,(e^{\displaystyle x})}}{dx}$ and is also written as ${(e^{\displaystyle x})}’$ in simple mathematical form.

The derivative of the natural exponential function can be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{dq}{\, (e^{\displaystyle q})} \,=\, e^{\displaystyle q}$

$(2) \,\,\,$ $\dfrac{d}{dt}{\, (e^{\displaystyle t})} \,=\, e^{\displaystyle t}$

$(3) \,\,\,$ $\dfrac{d}{dy}{\, (e^{\displaystyle y})} \,=\, e^{\displaystyle y}$

Learn how to derive the differentiation of the natural exponential function from first principle in differential calculus.

Latest Math Topics

Jun 05, 2023

Jun 01, 2023

May 21, 2023

May 16, 2023

May 10, 2023

Latest Math Problems

Jun 08, 2023

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved