Math Doubts

$(x-a)(x-b)$ identity


$(x-a)(x-b)$ $\,=\,$ $x^2-(a+b)x+ab$


$a$ and $b$ are two constants, and $x$ is a variable. The literals $x$ and $a$ formed a binomial $x-a$ by their difference. Similarly, the literals $x$ and $b$ also formed another binomial $x-b$ by their difference. The two polynomials are called as special binomials because the first term in each expression is same.

Hence, the product of them is called as the special product of binomials. It is written in the following mathematical form algebraically.


The product of them is equal to an algebraic expression $x^2-(a+b)x+ab$. Therefore, the product of special binomials $x-a$ and $x-b$ is expanded as $x^2-(a+b)x+ab$ in algebraic mathematics.

$(x-a)(x-b)$ $\,=\,$ $x^2-(a+b)x+ab$


This rule is used as a formula in mathematics when two difference basis binomials are involved in multiplication and a term in both polynomials is same.


$(p-3)(p-5)$ $\,=\,$ $p^2-(3+5)p+(3 \times 5)$

$\implies$ $(p-3)(p-5)$ $\,=\,$ $p^2-8p+15$

Actually, the product $(p-3)(p-5)$ can be obtained as per multiplication of algebraic expressions but it is a time taking process. Therefore, the algebraic identity is used as a formula in mathematics for obtaining the product of two difference basis special binomials in only two steps.


The expansion of $(x-a)(x-b)$ can be derived in mathematical form in two different mathematical approaches.

Algebraic Method

Learn how to derive the special product $(x-a)(x-b)$ by multiplying the binomials $x-a$ and $x-b$.

Geometric Method

Learn how to derive the special product of binomials $(x-a)$ and $(x-b)$ by the area of a square.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved