Math Doubts

Proof of $(x-a)(x-b)$ identity in Algebraic Method

The expansion of (x-a)(x-b) formula can be derived in algebraic approach by multiplying the two difference basis different binomials $x-a$ and $x-b$. According to multiplication of algebraic expressions, the special product of them can be obtained in mathematics.

Product form of the Binomials

Multiply the algebraic expressions $x-a$ and $x-b$ to express their product in mathematical form.by the multiplication of algebraic expressions.

$(x-a)(x-b)$ $\,=\,$ $(x-a) \times (x-b)$

Multiply the Algebraic expressions

According to the multiplication of algebraic expressions, multiply each term in the second polynomial by the each term in the first polynomial.

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x(x-b)-a(x-b)$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x \times x$ $+$ $x \times (-b)$ $-$ $a \times x$ $-a \times (-b)$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-xb-ax+ab$

Thus, the special product of the multinomials $x-a$ and $x-b$ is expanded as an algebraic expression $x^2-xb-ax+ab$.

Simplify the Expansion of the Product

The expansion of the special product of the binomials can be further simplified for expressing it in simple form.

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-ax-xb+ab$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-ax-bx+ab$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-x(a+b)+ab$

$\,\,\, \therefore \,\,\,\,\,\,$ $(x-a)(x-b)$ $\,=\,$ $x^2-(a+b)x+ab$

Therefore, it is proved that the special product of the binomials $x-a$ and $x-b$ can be expanded as an algebraic expression $x^2-(a+b)x+ab$ in mathematics. In this way, the expansion of the special product of binomials $(x-a)(x-b)$ can be derived in algebra.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved