Math Doubts

Proof of $(x-a)(x-b)$ identity in Algebraic Method

The expansion of (x-a)(x-b) formula can be derived in algebraic approach by multiplying the two difference basis different binomials $x-a$ and $x-b$. According to multiplication of algebraic expressions, the special product of them can be obtained in mathematics.

Product form of the Binomials

Multiply the algebraic expressions $x-a$ and $x-b$ to express their product in mathematical the multiplication of algebraic expressions.

$(x-a)(x-b)$ $\,=\,$ $(x-a) \times (x-b)$

Multiply the Algebraic expressions

According to the multiplication of algebraic expressions, multiply each term in the second polynomial by the each term in the first polynomial.

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x(x-b)-a(x-b)$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x \times x$ $+$ $x \times (-b)$ $-$ $a \times x$ $-a \times (-b)$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-xb-ax+ab$

Thus, the special product of the multinomials $x-a$ and $x-b$ is expanded as an algebraic expression $x^2-xb-ax+ab$.

Simplify the Expansion of the Product

The expansion of the special product of the binomials can be further simplified for expressing it in simple form.

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-ax-xb+ab$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-ax-bx+ab$

$\implies$ $(x-a)(x-b)$ $\,=\,$ $x^2-x(a+b)+ab$

$\,\,\, \therefore \,\,\,\,\,\,$ $(x-a)(x-b)$ $\,=\,$ $x^2-(a+b)x+ab$

Therefore, it is proved that the special product of the binomials $x-a$ and $x-b$ can be expanded as an algebraic expression $x^2-(a+b)x+ab$ in mathematics. In this way, the expansion of the special product of binomials $(x-a)(x-b)$ can be derived in algebra.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more