An equality property between two algebraic expressions is called an algebraic identity.

In algebra, two expressions in algebraic form are equal. The mathematical relationship between them is called an algebraic identity. There are some useful algebraic identities and they are used as formulas in mathematics. The following is the list of algebraic formulae with proofs and understandable examples to learn how to use them mathematically.

The list of standard algebraic identities to expand the binomials, which have exponents.

$(1). \,\,\,$ $(a+b)^2$ $\,=\,$ $a^2+b^2+2ab$

$(2). \,\,\,$ $(a-b)^2$ $\,=\,$ $a^2+b^2-2ab$

$(3). \,\,\,$ $(a+b)(a-b)$ $\,=\,$ $a^2-b^2$

$(4). \,\,\,$ $(a+b)^3$ $\,=\,$ $a^3+b^3+3ab(a+b)$

$(5). \,\,\,$ $(a-b)^3$ $\,=\,$ $a^3-b^3-3ab(a-b)$

The list of standard algebraic identities to multiply some special form binomials.

$(1). \,\,\,$ $(x+a)(x+b)$ $\,=\,$ $x^2+(a+b)x+ab$

$(2). \,\,\,$ $(x+a)(x-b)$ $\,=\,$ $x^2+(a-b)x-ab$

$(3). \,\,\,$ $(x-a)(x+b)$ $\,=\,$ $x^2-(a-b)x-ab$

$(4). \,\,\,$ $(x-a)(x-b)$ $\,=\,$ $x^2-(a+b)x+ab$

There are two types of algebraic identities to factorize (or factorise) the algebraic expressions.

$(1).\,\,$ $a^2-b^2$ $\,=\,$ $(a+b)(a-b)$

$(2).\,\,$ $x^2-y^2$ $\,=\,$ $(x+y)(x-y)$

$(3).\,\,$ $a^3-b^3$ $\,=\,$ $(a-b)(a^2+b^2+ab)$

$(4).\,\,$ $x^3-y^3$ $\,=\,$ $(x-y)(x^2+y^2+xy)$

The list of standard algebraic identities to expand the squares of trinomials.

$(1). \,\,\,$ ${(a+b+c)}^2$ $=$ $a^2$ $+$ $b^2$ $+$ $c^2$ $+$ $2ab$ $+$ $2bc$ $+$ $2ca$

$(2). \,\,\,$ ${(a+b-c)}^2$ $=$ $a^2$ $+$ $b^2$ $+$ $c^2$ $+$ $2ab$ $-$ $2bc$ $-$ $2ca$

$(3). \,\,\,$ ${(a-b+c)}^2$ $=$ $a^2$ $+$ $b^2$ $+$ $c^2$ $-$ $2ab$ $-$ $2bc$ $+$ $2ca$

$(4). \,\,\,$ ${(a-b-c)}^2$ $=$ $a^2$ $+$ $b^2$ $+$ $c^2$ $-$ $2ab$ $+$ $2bc$ $-$ $2ca$

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved