Math Doubts

Special Products of Binomials

The binomials are often involved in multiplication in some special forms and the products of such special form binomials are called as the special products of binomials. In mathematics, they are often used as formulas and it is very important to learn them for studying the algebra further. Here is the list of special products of binomials in algebraic form with proofs and examples.

Product of sum basis Binomials

$(1) \,\,\,$ ${(a+b)}^2$ $\,=\,$ $a^2+b^2+2ab$
$(2) \,\,\,$ ${(x+y)}^2$ $\,=\,$ $x^2+y^2+2xy$

Product of Difference basis Binomials

$(1) \,\,\,$ ${(a-b)}^2$ $\,=\,$ $a^2+b^2-2ab$
$(2) \,\,\,$ ${(x-y)}^2$ $\,=\,$ $x^2+y^2-2xy$

Product of Opposite sign Binomials

$(1) \,\,\,$ ${(a+b)}{(a-b)}$ $\,=\,$ $a^2-b^2$
$(2) \,\,\,$ ${(x+y)}{(x-y)}$ $\,=\,$ $x^2-y^2$

Product of Special case Binomials

$(1) \,\,\,$ ${(x+a)}{(x+b)}$ $\,=\,$ $x^2+(a+b)x+ab$

$(2) \,\,\,$ ${(x+a)}{(x-b)}$ $\,=\,$ $x^2+(a-b)x-ab$

$(3) \,\,\,$ ${(x-a)}{(x+b)}$ $\,=\,$ $x^2-(a-b)x-ab$

$(4) \,\,\,$ ${(x-a)}{(x-b)}$ $\,=\,$ $x^2-(a+b)x+ab$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved