The limits problems are often appeared with trigonometric functions. To find limits of functions in which trigonometric functions are involved, you must learn both trigonometric identities and limits of trigonometric functions formulas. Here is the list of solved easy to difficult trigonometric limits problems with step by step solutions in different methods for evaluating trigonometric limits in calculus.
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{mx}}{1-\cos{nx}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{\displaystyle e}{\big(\cos{(\sin{x})}\big)}}{x^2}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,\Large \frac{\pi}{4}}{\normalsize \dfrac{\sin{x}-\cos{x}}{x-\dfrac{\pi}{4}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\sin^3{x}}{\sin{x}-\tan{x}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{\log_{e}{(\cos{x})}}{\sqrt[\Large 4]{1+x^2}-1}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{x\cos{x}}}{x+\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{1-\cos{(2x)}}{x^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\Large \frac{1}{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(e^{-3x+2}-e^2)\sin{\pi x}}{4x^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize \dfrac{\cos{\Big(\dfrac{\pi}{x}\Big)}}{x-2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x\tan{2x}-2x\tan{x}}{(1-\cos{2x})^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{\cos{x}}{\frac{\pi}{2}-x}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{\sqrt{2+\cos{x}}-1}{(\pi-x)^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}-\sin{x}}{x^3}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{(1-\cos{2x})(3+\cos{x})}{x\tan{4x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \frac{\pi}{2}}{\normalsize \dfrac{1+\cos{2x}}{(\pi-2x)^2}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \sqrt[x^3]{1-x+\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{3x}}{\sin{4x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{x-\pi}{\sin{x}}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x-\sin{x}}{x^3}}$
Evaluate $\displaystyle \large \lim_{x \,\to\, \pi}{\normalsize \dfrac{x-\pi}{\sin{x}}}$
Find $\large \displaystyle \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin{(\pi\cos^2{x})}}{x^2}}$
Evaluate $\displaystyle \lim_{x \,\to\, 0}{\dfrac{\sin{2x}+3x}{4x+\sin{6x}}}$
$\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$
$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{x^3\sin{x}}{{(\sec{x}-\cos{x})}^2}}$
$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{3\sin{\pi x}-\sin{3\pi x}}{{(x-1)}^3}}$
$\displaystyle \large \lim_{x \,\to\, \pi} \, \normalsize \dfrac{1-\cos{7(x-\pi)}}{5{(x-\pi)}^2}$
$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\sqrt{1-\tan x}}{\sin x}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{2\sin{x}-\sin{2x}}{x^3}}$
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{\cos{\sqrt{x}}-\cos{\sqrt{a}}}{x-a}}$
$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sin{(x-1)}}{x^2-1}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{1-\cos{x}\sqrt{\cos{2x}}}{x^2}}$
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\cos{3x}-\cos{4x}}{x\sin{2x}}}$
$\displaystyle \large \lim_{\theta \,\to\, 0}{\normalsize \dfrac{\sin{5\theta}-\sin{3\theta}}{\theta}}$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved