Math Doubts

Trigonometric Limits Problems and Solutions

List of trigonometric limits problems with step by steps solutions for those want to learn and practice trigonometric functions basis limits problems.

Evaluate $\displaystyle \lim_{x \,\to\, 0}{\dfrac{\sin{2x}+3x}{4x+\sin{6x}}}$

$\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\cos{6x}}{1-\cos{7x}}$

$\large \displaystyle \lim_{x \to 0} \normalsize \dfrac{x^3\sin{x}}{{(\sec{x}-\cos{x})}^2}$

$\displaystyle \Large \lim_{x \,\to\, 1} \normalsize \dfrac{3\sin{\pi x}-\sin{3\pi x}}{{(x-1)}^3}$

$\displaystyle \large \lim_{x \,\to\, \pi} \, \normalsize \dfrac{1-\cos{7(x-\pi)}}{5{(x-\pi)}^2}$

$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{1-\sqrt{1-\tan x}}{\sin x}$

$\displaystyle \lim_{\displaystyle x \to 0} \dfrac{2\sin x -\sin 2x}{x^3}$

$\large \displaystyle \lim_{x \to a}$ $\dfrac{\cos \sqrt{x} -\cos \sqrt{a}}{x-a}$

$\displaystyle \lim_{x \to 1} \dfrac{\sin(x-1)}{x^2 -1}$

$\displaystyle \lim_{x \to 0} \dfrac{1-\cos x \sqrt{\cos 2x}}{x^2}$

$\displaystyle \lim_{x \to 0} \dfrac{\cos 3x -\cos 4x}{x \sin 2x}$

$$\lim_{\theta \to 0} \dfrac{\sin 5\theta -\sin 3\theta}{\theta}$$

Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more