Math Doubts

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\Large \frac{1}{x}}}$

The trigonometric function $1+\sin{x}$ and algebraic function $\dfrac{1}{x}$ formed a special function in exponential notation. The limit of this special function has to evaluate as $x$ approaches zero in this limit problem.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{x}}}$

Fundamental method

The limit of special function in exponential form is similar to the limit rule of $(1+x)^{\large \frac{1}{x}}$ as $x$ approaches $0$. So, we have to adjust the given function same as this limit rule in this method for evaluating the limit of given function as $x$ approaches $0$.

Adjust the function for required form

A $\sin{x}$ function is required in exponent position. So, let’s try an acceptable adjustment.

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\Large 1 \times \huge \frac{1}{x}}}$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{\sin{x}}{\sin{x}} \Large \times \huge \frac{1}{x}}}$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}} \Large \times \huge \frac{\sin{x}}{x}}}$

It can be simplified as follows by using the power rule of exponents.

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}\Bigg)^{\huge \frac{\sin{x}}{x}}}$

Simplify the function for evaluating the Limit

The limit of this special exponential function can be simplified by the exponentiation rule of the limits.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}\Bigg)^{\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \frac{\sin{x}}{x}}}}$

Evaluate the Limit of the simplified function

The limit of the function in exponent position expresses a limit rule. According to the trigonometric limit rules, the limit of sinx/x as x approaches 0 is equal to one.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}\Bigg)^{\Large 1}}$

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}\Bigg)}$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}}$

Let $x \,\to\, 0$, then $\sin{x} \,\to\, \sin{0}$. Therefore, $\sin{x} \,\to\, 0$. It clears that $\sin{x}$ approaches zero as $x$ tends to $0$.

$=\,\,\,$ $\displaystyle \large \lim_{\sin{x} \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{\sin{x}}}}$

Assume, $y = \sin{x}$ and express the whole expression in terms of $y$.

$=\,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \Big(1+y\Big)^{\huge \frac{1}{y}}}$

As per the exponential standard limit rule, the limit of the exponential function as $y$ closer to $0$ is equal to mathematical constant $e$.

$=\,\,\, e$

Advanced method

In this method, the complexity in the given function can be simplified by the logarithms.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(1+\sin{x}\Big)^{\huge \frac{1}{x}}}$

Use fundamental rule of Logarithms for adjustment

Use the fundamental rule of logarithms to release the function from its complexity.

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize e^{\displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)^{\huge \frac{1}{x}}}}}$

Simplify the function for evaluating the Limit

Now, use the exponential rule of limits to simplify the function further.

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)^{\huge \frac{1}{x}}}}}$

The mathematical function can be simplified by using the power rule of logarithms.

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\frac{1}{x} \times \displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)\Bigg)}}}$

It can be simplified further by the logarithmic limit rule. A $\sin{x}$ function is required in the denominator of the logarithmic function. So, let us take a step to make the $\sin{x}$ to appear in the denominator of the log function.

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(1 \times \frac{1}{x} \times \displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)\Bigg)}}}$

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\frac{\sin{x}}{\sin{x}} \times \frac{1}{x} \times \displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)\Bigg)}}}$

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\frac{1}{x} \times \frac{\sin{x}}{\sin{x}} \times \displaystyle \normalsize \log_e{\Big(1+\sin{x}\Big)\Bigg)}}}$

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\frac{1 \times \sin{x}}{x} \times \displaystyle \normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

$=\,\,\,$ $e^{\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\frac{\sin{x}}{x} \times \displaystyle \normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

Now, use the product rule of limits to get the limit of product of functions by the product of their limits.

$=\,\,\,$ $e^{\Bigg(\,\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \frac{\sin{x}}{x}} \times \displaystyle \large \lim_{x \,\to\, 0}{\normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

Evaluate the Limit of each function

As per the trigonometric limit rules, the limit of $\dfrac{\sin{x}}{x}$ as $x$ approaches $0$ is equal to one.

$=\,\,\,$ $e^{\Bigg(\, \displaystyle 1 \times \large \lim_{x \,\to\, 0}{\normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

$=\,\,\,$ $e^{\,\Bigg(\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

When $x \,\to\, 0$, the $\sin{x} \,\to\, \sin{0}$. Therefore, $\sin{x} \,\to\, 0$. Therefore, $\sin{x}$ approaches zero as $x$ closer to $0$.

$=\,\,\,$ $e^{\,\Bigg(\displaystyle \large \lim_{\sin{x} \,\to\, 0}{\normalsize \frac{\log_e{\Big(1+\sin{x}\Big)}}{\sin{x}}\Bigg)}}$

Now, take $z = \sin{x}$ and transform the whole function in terms of $z$.

$=\,\,\,$ $e^{\,\Bigg(\displaystyle \large \lim_{z \,\to\, 0}{\normalsize \frac{\log_e{\Big(1+z\Big)}}{z}\Bigg)}}$

As per the standard logarithmic rule, the limit of ln(1+x) by x as x approaches 0 is equal to one. Therefore, the limit of $\dfrac{\log_e{\Big(1+z\Big)}}{z}$ as $z$ approaches zero is also equal to one.

$=\,\,\,$ $e^{\,(1)}$

$=\,\,\,$ $e^1$

$=\,\,\,$ $e$

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved