$(1+x)^n$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

Let $x$ be a variable and $n$ be a constant. They both belongs to real numbers group, which means $x ∈ R$ and $n ∈ R$. Adding one to variable $x$ forms a binomial $1+x$. The constant $n$ belongs to real numbers $n ∈ R$. The binomial $1+x$ raised to the power $n$ forms a power function in the following form.

$(1+x)^n$

This power function is called the sum basis binomial theorem in one variable for positive exponent. It can be expanded mathematically in terms of variable $x$ as follows.

The sum basis binomial theorem in one variable is expanded as follows.

$(1+x)^n$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

The above expansion is also written in terms of binomial coefficients as follows. You can follow any one of the following or different notation for binomial coefficient in the expansion.

$(1).\,\,\,$ $(1+x)^n$ $\,=\,$ $\displaystyle \binom{n}{0}$ $+$ $\displaystyle \binom{n}{1} x$ $+$ $\displaystyle \binom{n}{2} x^2$ $+$ $\displaystyle \binom{n}{3} x^3$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} x^n$

$(2).\,\,\,$ $(1+x)^n$ $\,=\,$ $^nC_0$ $+$ $^nC_1 x$ $+$ $^nC_2 x^2$ $+$ $^nC_3 x^3$ $+$ $\cdots$ $+$ $^nC_n x^n$

Instead, the expansion of sum basis binomial theorem in one variable is easily written as follows.

$(1+x)^n$ $\,=\,$ $\displaystyle \sum_{r \,=\, 0}^{n} \dfrac{n(n-1)(n-2)\cdots (n-r+1)}{r!}x^r$

Similarly, the expansion of this binomial theorem can also be written in the following popular forms.

$(1).\,\,\,$ $(1+x)^n$ $\,=\,$ $\displaystyle \sum_{r \,=\, 0}^{n} \binom{n}{r} x^r$

$(2).\,\,\,$ $(1+x)^n$ $\,=\,$ $\displaystyle \sum_{r \,=\, 0}^{n}$ $^nC_r\,x^r$

Learn how to derive the sum basis binomial theorem in one variable for positive index in mathematics.

Latest Math Topics

Mar 21, 2023

Feb 25, 2023

Feb 17, 2023

Feb 10, 2023

Jan 15, 2023

Latest Math Problems

Mar 03, 2023

Mar 01, 2023

Feb 27, 2023

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved