# Binomial Theorem in one variable

The expansion of $n$-th power of a binomial in one variable is called the binomial theorem in one variable.

## Introduction

Let $x$ be a real number $x \,∈\, R$ and a constant $n$ belongs to real numbers $n \,∈\, R$. The expansion of binomial theorem in one is written in the following forms.

### Sum basis Binomial Theorem

$(1+x)^n$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

$(1+x)^{-n}$ $\,=\,$ $1$ $-$ $nx$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

### Difference basis Binomial Theorem

$(1-x)^n$ $\,=\,$ $1$ $-$ $nx$ $+$ $\dfrac{n(n-1)}{2!}x^2$ $-$ $\dfrac{n(n-1)(n-2)}{3!}x^3$ $+$ $\cdots$

$(1-x)^{-n}$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n+1)}{2!}x^2$ $+$ $\dfrac{n(n+1)(n+2)}{3!}x^3$ $+$ $\cdots$

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

###### Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.