Math Doubts

Proof of Sum basis Binomial Theorem in One variable for Positive exponent

The sum basis binomial theorem in one variable for positive exponent can be expanded in the following two mathematical forms.

$(1).\,$ $(x+y)^n$ $\,=\,$ $\displaystyle \binom{n}{0} x^n y^0$ $+$ $\displaystyle \binom{n}{1} x^{n-1} y^1$ $+$ $\displaystyle \binom{n}{2} x^{n-2} y^2$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{r} x^{n-r} y^r$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} x^{0} y^n$

$(2).\,$ $(x+y)^n$ $\,=\,$ $^nC_0\,x^n y^0$ $+$ $^nC_1\,x^{n-1} y^1$ $+$ $^nC_2\,x^{n-2} y^2$ $+$ $\cdots$ $+$ $^nC_r\,x^{n-r} y^r$ $+$ $\cdots$ $+$ $^nC_n\,x^{0} y^n$

You can follow any one of the above expansions to prove the binomial theorem in one variable.

Binomial Theorem in one variable

The Binomial theorem is defined in terms of two variables $x$ and $y$. In this case, the binomial theorem is expressed in one variable. So, substitute $x \,=\, 1$.

$\implies$ $(1+y)^n$ $\,=\,$ $\displaystyle \binom{n}{0} (1)^n y^0$ $+$ $\displaystyle \binom{n}{1} (1)^{n-1} y^1$ $+$ $\displaystyle \binom{n}{2} (1)^{n-2} y^2$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{r} (1)^{n-r} y^r$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} (1)^{0} y^n$

$\implies$ $(1+y)^n$ $\,=\,$ $^nC_0\,(1)^n y^0$ $+$ $^nC_1\,(1)^{n-1} y^1$ $+$ $^nC_2\,(1)^{n-2} y^2$ $+$ $\cdots$ $+$ $^nC_r\,(1)^{n-r} y^r$ $+$ $\cdots$ $+$ $^nC_n\,(1)^{0} y^n$

Now, simplify the expansion of binomial theorem in one variable.

$\implies$ $(1+y)^n$ $\,=\,$ $\displaystyle \binom{n}{0} \times 1 \times y^0$ $+$ $\displaystyle \binom{n}{1} \times 1 \times y^1$ $+$ $\displaystyle \binom{n}{2} \times 1 \times y^2$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{r} \times 1 \times y^r$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} \times 1 \times y^n$

$\implies$ $(1+y)^n$ $\,=\,$ $^nC_0\, \times 1 \times y^0$ $+$ $^nC_1\, \times 1 \times y^1$ $+$ $^nC_2\, \times 1 \times y^2$ $+$ $\cdots$ $+$ $^nC_r\, \times 1 \times y^r$ $+$ $\cdots$ $+$ $^nC_n\, \times 1 \times y^n$

Finally, the binomial theorem in one variable is written in the following forms.

$\implies$ $(1+y)^n$ $\,=\,$ $\displaystyle \binom{n}{0} y^0$ $+$ $\displaystyle \binom{n}{1} y^1$ $+$ $\displaystyle \binom{n}{2} y^2$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{r} y^r$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} y^n$

$\implies$ $(1+y)^n$ $\,=\,$ $^nC_0\, y^0$ $+$ $^nC_1\, y^1$ $+$ $^nC_2\, y^2$ $+$ $\cdots$ $+$ $^nC_r\, y^r$ $+$ $\cdots$ $+$ $^nC_n\, y^n$

Binomial Theorem in one variable in usual form

The expansion of the Binomial Theorem in one variable is derived in terms of $y$ but we are used to express it in terms of $x$. So, write the binomial theorem in one variable in terms of $x$ by replacing $y$ with $x$.

$(1).\,$ $(1+x)^n$ $\,=\,$ $\displaystyle \binom{n}{0} x^0$ $+$ $\displaystyle \binom{n}{1} x^1$ $+$ $\displaystyle \binom{n}{2} x^2$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{r} x^r$ $+$ $\cdots$ $+$ $\displaystyle \binom{n}{n} x^n$

$(2).\,$ $(1+x)^n$ $\,=\,$ $^nC_0\, x^0$ $+$ $^nC_1\, x^1$ $+$ $^nC_2\, x^2$ $+$ $\cdots$ $+$ $^nC_r\, x^r$ $+$ $\cdots$ $+$ $^nC_n\, x^n$

Replace the Binomial coefficients by their values

Find the values of binomial coefficients to substitute them in the expansion of the binomial theorem.

$\displaystyle \binom{n}{0}$ $\,=\,$ $^nC_0$ $\,=\,$ $\dfrac{n!}{0!(n-0)!}$ $\,=\,$ $1$

$\displaystyle \binom{n}{1}$ $\,=\,$ $^nC_1$ $\,=\,$ $\dfrac{n!}{1!(n-1)!}$ $\,=\,$ $\dfrac{n}{1!}$ $\,=\,$ $n$

$\displaystyle \binom{n}{2}$ $\,=\,$ $^nC_2$ $\,=\,$ $\dfrac{n!}{2!(n-2)!}$ $\,=\,$ $\dfrac{n(n-1)}{2!}$

$\,\,\,\,\,\vdots$

$\displaystyle \binom{n}{r}$ $\,=\,$ $^nC_r$ $\,=\,$ $\dfrac{n!}{r!(n-r)!}$ $\,=\,$ $\dfrac{n(n-1)(n-2)\cdots (n-r+1)}{r!}$

$\,\,\,\,\,\vdots$

$\displaystyle \binom{n}{n}$ $\,=\,$ $^nC_n$ $\,=\,$ $\dfrac{n!}{n!(n-n)!}$ $\,=\,$ $1$

Now, substitute the values of binomial coefficients in the expansion of the binomial theorem.

$\implies$ $(1+x)^n$ $\,=\,$ $1 \times x^0$ $+$ $n \times x^1$ $+$ $\dfrac{n(n-1)}{2!} \times x^2$ $+$ $\cdots$ $+$ $\dfrac{n(n-1)(n-2)\cdots (n-r+1)}{r!} \times x^r$ $+$ $\cdots$ $+$ $1 \times x^n$

According to the zero power rule, the $x$ raised to the power zero is equal to one. The $x$ raised to the power one is denoted by $x$ in mathematics.

$\implies$ $(1+x)^n$ $\,=\,$ $1 \times 1$ $+$ $n \times x$ $+$ $\dfrac{n(n-1)}{2!} \times x^2$ $+$ $\cdots$ $+$ $\dfrac{n(n-1)(n-2)\cdots (n-r+1)}{r!} \times x^r$ $+$ $\cdots$ $+$ $1 \times x^n$

$\,\,\,\therefore\,\,\,\,\,\,$ $(1+x)^n$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n-1)}{2!}\,x^2$ $+$ $\cdots$ $+$ $\dfrac{n(n-1)(n-2)\cdots (n-r+1)}{r!}\,x^r$ $+$ $\cdots$ $+$ $x^n$

Thus, the sum based binomial theorem in one variable is derived in mathematics and it is also written simply as follows.

$\,\,\,\therefore\,\,\,\,\,\,$ $(1+x)^n$ $\,=\,$ $1$ $+$ $nx$ $+$ $\dfrac{n(n-1)}{2!}\,x^2$ $+$ $\dfrac{n(n-1)(n-2)}{3!}\,x^3$ $+$ $\cdots$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved