A mathematical operation of subtracting two like algebraic terms is called the subtraction of like algebraic terms.

In algebra, two like algebraic terms are connected by a minus sign to find the difference between them mathematically. In fact, the like algebraic terms have a common literal coefficient and it is taken common from both the terms to perform the subtraction successfully.

$2x^2y$ and $5x^2y$ are two two like algebraic terms. Take, $2x^2y$ is subtracted from $5x^2y$ and the subtraction can be done in three simple steps.

Write $5x^2y$ first and then $2x^2y$ in a row but display a minus sign between them to represent the subtraction.

$5x^2y-2x^2y$

Take the literal coefficient common from both the terms.

$\implies$ $5x^2y-2x^2y$ $\,=\,$ ${(5-2)}x^2y$

Now, find the subtraction of the numbers and multiply the difference by their common literal coefficient.

$\,\,\, \therefore \,\,\,\,\,\,$ $5x^2y-2x^2y$ $\,=\,$ $3x^2y$

It can be observed that the difference of any two like algebraic terms is also a like algebraic term. In this way, the subtraction of any two like algebraic terms can be performed in algebra in three simple steps.

For better understanding the subtraction of algebraic terms, obverse the following examples.

$(1)\,\,\,\,\,\,$ $7a-5a$ $\,=\,$ $(7-5)a$ $\,=\,$ $2a$

$(2)\,\,\,\,\,\,$ $2bc-10bc$ $\,=\,$ $(2-10)bc$ $\,=\,$ $-8bc$

$(3)\,\,\,\,\,\,$ $3c^2-2c^2$ $\,=\,$ $(3-2)c^2$ $\,=\,$ $c^2$

$(4)\,\,\,\,\,\,$ $17d^3e^2f-23d^3e^2f$ $\,=\,$ $(17-23)d^3e^2f$ $\,=\,$ $-6d^3e^2f$

$(5)\,\,\,\,\,\,$ $5ghi-ghi$ $\,=\,$ $(5-1)ghi$ $\,=\,$ $4ghi$

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.