# Algebraic terms

A term that contains at least a literal number to represent a quantity is called an algebraic term.

## Introduction

An algebraic term is a term that contains at least one literal. Algebraic terms are usually formed by the involvement of both numbers and literals in different possible combinations to represent quantities mathematically.

### Formation

The algebraic terms are formed in four different ways possibly to represent quantities mathematically.

01

#### Numbers

Every number is a symbol and used to represent a particular quantity. Hence, every real number is a basic example to algebraic terms.

##### Examples

$0$, $3$, $-8$, $\dfrac{4}{7}$, $-\dfrac{13}{6}$, $0.56$, $-3.15$, $\sqrt{13}$, $-\dfrac{2}{\sqrt[\displaystyle 3]{9}}$, $\ldots$

02

#### Literals

Every symbol can be used to represent a quantity. Therefore, the symbols (can be either constants or variables) are also best examples of algebraic terms.

##### Examples

$a$, $p$, $\theta$, $\delta$, $c_o$, $\pi$, $\ldots$

03

#### Product form

Numbers and symbols involve in multiplication to form single terms as their product to represent quantities. So, every algebraic term can be formed in product form by a number and at least one symbol.

##### Examples

$2x$, $-p^2$, $7ab$, $-6m^2}$, $0.5rs^2}t^3$, $\Bigg(\dfrac{3}{7}\Bigg)cd^2}e^3}f^4$, $\ldots$

04

#### Quotient form

Numbers and symbols are also involved in division to form single terms as their quotient. Therefore, every algebraic term can be formed in quotient form by a number and at least one symbol.

##### Examples

$\dfrac{1}{d}$, $-\dfrac{a}{2b}$ , $\dfrac{p^2}}{q$, $-\dfrac{m^4}}{n^3}r^6}$, $\ldots$

Latest Math Topics
Email subscription
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more