The algebraic terms whose literal coefficients are the same, are called the like algebraic terms.

The likeness of two or more algebraic terms are determined by their literal coefficients. If the literal coefficients of two or more algebraic terms are the same, then the algebraic terms are looked similar, and they are called as like algebraic terms. Therefore, the property of the likeness is a key point for determining the like algebraic terms in algebra.

$-3xy$ and $6xy$ are two algebraic terms.

Observe the two algebraic terms closely and it seems they are similar. Let’s find the literal coefficients of them to confirm the property of likeness of them mathematically.

$-3xy = -3 \times xy$ and $6xy = 6 \times xy$

$xy$ is the literal coefficient of $-3$ for the first algebraic term and $xy$ is the literal coefficient of $6$ for the second algebraic term. The literal coefficients of them are the same. Hence, the two algebraic terms are looked similar and they are called as like algebraic terms.

Observe the following examples to understand like algebraic terms much better.

$(1) \,\,\,$ $a$, $-6a$

$(2) \,\,\,$ $l^2$, $\dfrac{l^2}{5}$, $-0.25l^2$

$(3) \,\,\,$ $4mn$, $-6mn$, $7mn$, $9mn$

$(4) \,\,\,$ $p^3q^2r$, $5p^3q^2r$

$(5) \,\,\,$ $-xyz$, $6xyz$, $-10xyz$, $26xyz$, $-276xyz$

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved