$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f{(x)}+g{(x)}\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

The limit of sum of functions is equal to the sum of their limits. It is called as sum rule of limits and also called as the addition rule of limits.

$f(x)$ and $g(x)$ are two different functions in terms of $x$. The sum of the functions is $f(x)+g(x)$.

Take the value of $x$ approaches $a$. The limit of sum of the functions as $x$ approaches $a$ is written in calculus in the following mathematical form.

$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f(x)+g(x)\Big]$

Now, substitute $x = a$ to find the value of sum of the functions when $x$ tends to $a$.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f(x)+g(x)\Big]$ $=$ $f(a)+g(a)$

Now, evaluate limit of each function as $x$ approaches $a$

$\displaystyle \large \lim_{x \,\to\, a} \normalsize f(x) = f(a)$

$\displaystyle \large \lim_{x \,\to\, a} \normalsize g(x) = g(a)$

According to the result of the first step,

$\implies$ $\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f(x)+g(x)\Big]$ $=$ $f(a)+g(a)$

But $f(a) = \displaystyle \large \lim_{x \,\to\, a} \normalsize f(x)$ and $g(a) = \displaystyle \large \lim_{x \,\to\, a} \normalsize g(x)$ as per result of second step.

$\therefore \,\,\,\,\,\, \displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f(x)+g(x)\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \normalsize {f(x)} + \displaystyle \large \lim_{x \,\to\, a} \normalsize {g(x)}$

It is proved that the limit of sum of the functions is equal to the addition of their limits.

The sum law of limits can also be extended to more two functions as well. If $f_{1}(x)$, $f_{2}(x)$, $f_{3}(x) \ldots$ are functions, then the sum rule of limits is written as follows.

$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f_{1}(x)+f_{2}(x)+f_{3}(x)\ldots\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a} \normalsize {f_{1}(x)} + \displaystyle \large \lim_{x \,\to\, a} \normalsize {f_{2}(x)} + \displaystyle \large \lim_{x \,\to\, a} \normalsize {f_{3}(x)} \ldots$

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved