Math Doubts

Double Power Law of Logarithms


$\log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

Logarithm of a quantity can be calculated by expressing quantity and base quantity of logarithmic term in exponential form, then the value of product of quotient of exponent of quantity by exponent of base quantity and log of base of quantity to base of base quantity gives the logarithm of quantity.

This mathematical identity is called as double power rule property of logarithms and it is used as a formula when the quantity and base quantity of logarithmic term are expressed in exponential notation.


Learn how to derive property of double power rule of logarithms in algebraic form when quantity and base quantity of log term are written in exponential form.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved