Math Doubts

Laws of Logarithms

Log One Rule

Logarithm of one to any number is zero.

$\large \log_{b}{1} = 0$

Log of base Rule

Logarithm of base quantity is always one.

$\large \log_{b}{b} \,=\, 1$

Fundamental Law

$\large b^{\displaystyle \log_{b} m} = m$

Product Law

Logarithm of the product of two or more quantities is equal to sum of their logs.

$\large (1) \,\,\,\,\,\,$ $\large \log_{b}{(m.n)}$ $\large \,=\,$ $\large \log_{b} m + \log_{b} n$

$\large (2) \,\,\,\,\,\,$ $\large \log_{b}{(m.n.o \cdots)}$ $\large \,=\,$ $\large \log_{b}{m}$ $+$ $\large \log_{b}{n}$ $+$ $\large \log_{b}{o} + \cdots$

Quotient Rule

Logarithm of quotient of two numbers is equal to difference of their logs.

$\large \log_{b}{\Big(\dfrac{m}{n}\Big)}$ $\large \,=\,$ $\large \log_{b}{m} \,–\, \log_{b}{n}$

Power Rules

The rules of logarithms which simplify the way to find the values of logarithmic terms by expressing quantity and base quantity of log terms in exponential form.

$\large (1). \,\,\,\,\,\,$ $\large \log_{b}{m^n} \,=\, n\log_{b}{m}$

$\large (2). \,\,\,\,\,\,$ $\large \log_{b^y}{m} \,=\, {\Big(\dfrac{1}{y}\Big)}\log_{b}{m}$

$\large (3). \,\,\,\,\,\,$ $\large \log_{b^y}{m^x} \,=\, {\Big(\dfrac{x}{y}\Big)}\log_{b}{m}$

07

Change of Base formulas

$\large (1). \,\,\,\,\,\, $ $\large \log_{b}{m} = \log_{d}{m} \times \log_{b}{d}$

$\large (2). \,\,\,\,\,\, $ $\large \log_{b}{m} = \dfrac{\log_{d}{m}}{\log_{d}{b}}$

$\large (3). \,\,\,\,\,\, $ $\large \log_{b}{m} = \dfrac{1}{\log_{m}{b}}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved