Math Doubts

Proof of Double Power Law of Logarithms

Formula

$\log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

The double power rule of logarithms is a mathematical identity which is used to find the value of logarithm of a quantity by expressing quantity and base quantity of logarithmic term in exponential notation.

Proof

$p$ and $q$ are two quantities and assume they are expressed in exponential form as $m^{\displaystyle x}$ and $n^{\displaystyle y}$ respectively.

$p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$

The value of logarithm of $p$ to $q$ is written as $\log_{q}{p}$ in mathematics. Actually, $p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$.

Therefore, $\log_{q}{p}$ $\,=\,$ $\log_{n^y}{m^{\displaystyle x}}$

Find Log of quantity in exponential form

Take $t \,=\, b^y$ and the logarithmic function can be written as follows.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $\log_{t}{m^{\displaystyle x}}$

According to Power law of Logarithms, the log of a quantity in exponential form to a base is equal to the product of exponent and log of the base of exponential term to same base.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{t}{m}$

Now, replace the actual value of the base $t$.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

Find Log of quantity to base in exponential form

It is time to find the value of log of $m$ to a base which is expressed in exponential form as $b^{y}$. It can be done by the base power rule of logarithm.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Combine results of both steps

Now, recollect the results of above two steps once.

$(1) \,\,\,\,\,\,$ $\log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

$(2) \,\,\,\,\,\,$ $\log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Now, combine both results to a log property to find the value of log of a quantity in exponential form to base in exponential form.

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \log_{b^y}{m}$

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \Big(\dfrac{1}{y}\Big)\log_{b}{m}$

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

Thus, the double power rule of logarithms is derived in algebraic form and it can be used as an identity in mathematics.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved