$\log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

The double power rule of logarithms is a mathematical identity which is used to find the value of logarithm of a quantity by expressing quantity and base quantity of logarithmic term in exponential notation.

$p$ and $q$ are two quantities and assume they are expressed in exponential form as $m^{\displaystyle x}$ and $n^{\displaystyle y}$ respectively.

$p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$

The value of logarithm of $p$ to $q$ is written as $\log_{q}{p}$ in mathematics. Actually, $p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$.

Therefore, $\log_{q}{p}$ $\,=\,$ $\log_{n^y}{m^{\displaystyle x}}$

Take $t \,=\, b^y$ and the logarithmic function can be written as follows.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $\log_{t}{m^{\displaystyle x}}$

According to Power law of Logarithms, the log of a quantity in exponential form to a base is equal to the product of exponent and log of the base of exponential term to same base.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{t}{m}$

Now, replace the actual value of the base $t$.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

It is time to find the value of log of $m$ to a base which is expressed in exponential form as $b^{y}$. It can be done by the base power rule of logarithm.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Now, recollect the results of above two steps once.

$(1) \,\,\,\,\,\,$ $\log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

$(2) \,\,\,\,\,\,$ $\log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Now, combine both results to a log property to find the value of log of a quantity in exponential form to base in exponential form.

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \log_{b^y}{m}$

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \Big(\dfrac{1}{y}\Big)\log_{b}{m}$

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

Thus, the double power rule of logarithms is derived in algebraic form and it can be used as an identity in mathematics.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved