The limits are involved in four mathematical operations. So, it is essential for everyone to know how to perform operations with limits.

The limit of sum of two or more functions as input approaches some value, is equal to sum of their limits.

$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f{(x)}+g{(x)}\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $+$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

The limit of subtraction of two functions as input approaches some value, is equal to subtraction of their limits.

$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f{(x)}-g{(x)}\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $-$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

The limit of multiplication of two or more functions as input tends to some value, is equal to product of their limits.

$\displaystyle \large \lim_{x \,\to\, a} \normalsize \Big[f{(x)}.g{(x)}\Big]$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}$ $\times$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}$

The limit of quotient of two functions as input tends to some value, is equal to quotient of their limits.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{f{(x)}}{g{(x)}}}$ $\,=\,$ $\dfrac{\displaystyle \large \lim_{x \,\to\, a}{\normalsize f{(x)}}}{\displaystyle \large \lim_{x \,\to\, a}{\normalsize g{(x)}}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.