Math Doubts

$\displaystyle \lim_{x \,\to\, 0} \dfrac{\tan{x}}{x}$ formula


$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}} \,=\, 1$

The limit of quotient of tan of angle by angle as the angle approaches zero is equal to one. It is a standard result in calculus and used as a rule for finding the limit of a function in which tangent is involved.


$x$ is a variable and used to represent angle of a right triangle. The tangent function is written as $\tan{x}$ as per trigonometry. The limit of ratio of $\tan{x}$ to $x$ as $x$ tends to zero is often appeared in calculus.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\tan{x}}{x}}$

In fact, the limit of $\tan{(x)}/x$ as $x$ approaches to $0$ is equal to $1$. This standard result in tan function is used as a formula everywhere in the mathematics.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved