Math Doubts

Proof of $\displaystyle \large \lim_{x\,\to\,0}{\normalsize \dfrac{a^{\displaystyle x}-1}{x}}$ formula

The limit of the quotient of a raised to the power of x minus 1 by x as the value of $x$ approaches $0$ is a formula in limits and its limit is equal to natural logarithm of $a$. So, let’s learn how to prove this limit rule mathematically in calculus.

Express the function in Natural exponential form

According to fundamental law of logarithms, the $a$ raised to the $x$-th power can be written in the form of natural exponential function as follows.

$a^{\displaystyle \normalsize x} \,=\, e^{\displaystyle \log_{e}{\big(a^{\displaystyle \normalsize x}\big)}}$

Now, replace the exponential function in the limit function by its equivalent form in natural exponential function.

$\implies$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x}-1}{x}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle \log_{e}{\big(a^{\displaystyle \normalsize x}\big)}}-1}{x}}$

Expand the exponential function

The natural exponential function can be expanded as the following power series.

$e^{\displaystyle x}$ $\,=\,$ $1$ $+$ $\dfrac{x}{1!}$ $+$ $\dfrac{x^2}{2!}$ $+$ $\dfrac{x^3}{3!}$ $+$ $\cdots$

In the same way, it can be written in terms of a variable $y$ as follows.

$e^{\displaystyle y}$ $\,=\,$ $1$ $+$ $\dfrac{y}{1!}$ $+$ $\dfrac{y^2}{2!}$ $+$ $\dfrac{y^3}{3!}$ $+$ $\cdots$

Take $y \,=\, e^{\displaystyle \log_{e}{\big(a^{\displaystyle \normalsize x}\big)}}$ and substitute the value of $y$ in the expansion of natural exponential function.

$\implies$ $e^{\displaystyle \log_{e}{a^{\displaystyle \normalsize x}}}$ $\,=\,$ $1$ $+$ $\dfrac{\log_{e}{a^{\displaystyle x}}}{1!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^2}{2!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^3}{3!}$ $+$ $\cdots$

$\,\,\, \therefore \,\,\,\,\,\,$ $a^{\displaystyle x}$ $\,=\,$ $1$ $+$ $\dfrac{\log_{e}{a^{\displaystyle x}}}{1!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^2}{2!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^3}{3!}$ $+$ $\cdots$

Calculate the value of Rational function

The value of $a$ raised to the power of $x$ is evaluated in a power series in the above step and it is time to find the value of rational function by using the power series.

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $\dfrac{\log_{e}{a^{\displaystyle x}}}{1!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^2}{2!}$ $+$ $\dfrac{{(\log_{e}{a^{\displaystyle x}})}^3}{3!}$ $+$ $\cdots$

Write each logarithmic function in factor form for our convenience.

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $\dfrac{\log_{e}{a^{\displaystyle x}}}{1!}$ $+$ $\dfrac{(\log_{e}{a^{\displaystyle x}}) \times (\log_{e}{a^{\displaystyle x}})}{2!}$ $+$ $\dfrac{(\log_{e}{a^{\displaystyle x}}) \times (\log_{e}{a^{\displaystyle x}}) \times (\log_{e}{a^{\displaystyle x}})}{3!}$ $+$ $\cdots$

Apply the power rule of logarithms to each logarithmic term in the infinite series.

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $\dfrac{x\log_{e}{a}}{1!}$ $+$ $\dfrac{(x\log_{e}{a}) \times (x\log_{e}{a})}{2!}$ $+$ $\dfrac{(x\log_{e}{a}) \times (x\log_{e}{a}) \times (x\log_{e}{a})}{3!}$ $+$ $\cdots$

Now, multiply the factors in each term to express their product in simple form.

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $\dfrac{x\log_{e}{a}}{1!}$ $+$ $\dfrac{x^2 {(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{x^3 {(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$

In each term of the power series, $x$ is a common factor. So, let’s take out the factor $x$ common from all the terms.

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $\dfrac{x \times \log_{e}{a}}{1!}$ $+$ $\dfrac{x \times x{(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{x \times x^2 {(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$

$\implies$ $a^{\displaystyle x}-1$ $\,=\,$ $x \times \Bigg($ $\dfrac{\log_{e}{a}}{1!}$ $+$ $\dfrac{x{(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{x^2{(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$ $\Bigg)$

The common factor $x$ multiplies the expression on right hand side of the equation and it divides the expression on the left-hand side of the equation.

$\,\,\,\therefore\,\,\,\,\,\,$ $\dfrac{a^{\displaystyle x}-1}{x}$ $\,=\,$ $\dfrac{\log_{e}{a}}{1!}$ $+$ $\dfrac{x{(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{x^2{(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$

Evaluate the Limit of Rational function

In the above step, the value of the rational function is calculated as a power series and it can be replaced by the power series for finding the limit of $a$ to the $x$-th power minus $1$ by $x$ as $x$ is closer to zero.

$\implies$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x}-1}{x}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\dfrac{\log_{e}{a}}{1!}}$ $+$ $\dfrac{x{(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{x^2{(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$ $\Bigg)$

Use the direct substitution method to find the limit of the power series.

$\,\,\,=\,$ $\dfrac{\log_{e}{a}}{1!}$ $+$ $\dfrac{(0){(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{{(0)}^2{(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$

$\,\,\,=\,$ $\dfrac{\log_{e}{a}}{1!}$ $+$ $\dfrac{0 \times {(\log_{e}{a})}^2}{2!}$ $+$ $\dfrac{0 \times {(\log_{e}{a})}^3}{3!}$ $+$ $\cdots$

$\,\,\,=\,$ $\dfrac{\log_{e}{a}}{1}$ $+$ $\dfrac{0}{2!}$ $+$ $\dfrac{0}{3!}$ $+$ $\cdots$

$\,\,\,=\,$ $\log_{e}{a}$ $+$ $0$ $+$ $0$ $+$ $\cdots$

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x}-1}{x}}$ $\,=\,$ $\log_{e}{a}$

Therefore, it is proved that the limit of $a$ raised to the power of $x$ minus $1$ by $x$ as the value of $x$ tends to $0$ is equal to natural logarithm of constant $a$. It can also be written in the following form.

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^{\displaystyle x}-1}{x}}$ $\,=\,$ $\ln{a}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved