The mathematical formula for the integration by parts can be derived in integral calculus by the concepts of differential calculus.
$f{(x)}$ and $g{(x)}$ are two functions in terms of $x$. As per the product rule of differentiation, the derivative of the product of the functions $f{(x)}$ and $g{(x)}$ can be written into its equivalent form.
$\dfrac{d}{dx}{\, \Big({f{(x)}}{g{(x)}}\Big)}$ $\,=\,$ $f{(x)}\dfrac{d}{dx}{\, {g{(x)}}}$ $+$ $g{(x)}\dfrac{d}{dx}{\, {f{(x)}}}$
Take $u = f{(x)}$ and $v = g{(x)}$. Now, express the derivative product rule in differential form.
$\implies$ $\dfrac{d}{dx}{\, (uv)}$ $\,=\,$ $u\dfrac{d}{dx}{\, v}$ $+$ $v\dfrac{d}{dx}{\, u}$
$\implies$ $\dfrac{d(uv)}{dx}$ $\,=\,$ $u\dfrac{dv}{dx}$ $+$ $v\dfrac{du}{dx}$
Multiply both sides of the equation by the differential element $dx$.
$\implies$ $\dfrac{d(uv)}{dx} \times dx$ $\,=\,$ $\Big(u\dfrac{dv}{dx}$ $+$ $v\dfrac{du}{dx}\Big) \times dx$
$\implies$ $\dfrac{d(uv)}{dx} \times dx$ $\,=\,$ $u\dfrac{dv}{dx} \times dx$ $+$ $v\dfrac{du}{dx} \times dx$
$\implies$ $d(uv) \times \dfrac{dx}{dx}$ $\,=\,$ $udv \times \dfrac{dx}{dx}$ $+$ $vdu \times \dfrac{dx}{dx}$
$\implies$ $d(uv) \times 1$ $\,=\,$ $udv \times 1$ $+$ $vdu \times 1$
$\implies$ $d(uv)$ $\,=\,$ $udv$ $+$ $vdu$
Now, integrate both sides of the differential equation.
$\implies$ $\displaystyle \int d(uv)$ $\,=\,$ $\displaystyle \int udv$ $+$ $\displaystyle \int vdu$
$\implies$ $uv$ $\,=\,$ $\displaystyle \int udv$ $+$ $\displaystyle \int vdu$
$\implies$ $uv$ $-$ $\displaystyle \int vdu$ $\,=\,$ $\displaystyle \int udv$
$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \int udv$ $\,=\,$ $uv$ $-$ $\displaystyle \int vdu$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved