Math Doubts

Integration by parts


$\displaystyle \int udv$ $\,=\,$ $uv$ $-$ $\displaystyle \int vdu$

A mathematical approach of finding the integral of a product of functions from the integral of their derivative and antiderivative, is called the integration by parts.


$f{(x)}$ and $g{(x)}$ are two functions. Take $u = f{(x)}$ and $v = g{(x)}$

The derivatives of both functions in differential form are written in the following mathematical form.

$(1) \,\,\,$ $du = f'{(x)}dx$

$(2) \,\,\,$ $dv = g'{(x)}dx$

Let’s study each part of this integral property.

$\displaystyle \int udv \,=\, \int f{(x)}.g'{(x)} dx$ and $\displaystyle \int vdu \,=\, \int g{(x)}.f'{(x)} dx$

Each equation represents the integration of a product of a function and derivative of another function, and $uv$ is a product of a function and an antiderivative of another function.


Learn how to derive the integration by parts formula in mathematical form.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved