$\displaystyle \int udv$ $\,=\,$ $uv$ $-$ $\displaystyle \int vdu$

A mathematical approach of finding the integral of a product of functions from the integral of their derivative and antiderivative, is called the integration by parts.

$f{(x)}$ and $g{(x)}$ are two functions. Take $u = f{(x)}$ and $v = g{(x)}$

The derivatives of both functions in differential form are written in the following mathematical form.

$(1) \,\,\,$ $du = f'{(x)}dx$

$(2) \,\,\,$ $dv = g'{(x)}dx$

Let’s study each part of this integral property.

$\displaystyle \int udv \,=\, \int f{(x)}.g'{(x)} dx$ and $\displaystyle \int vdu \,=\, \int g{(x)}.f'{(x)} dx$

Each equation represents the integration of a product of a function and derivative of another function, and $uv$ is a product of a function and an antiderivative of another function.

Learn how to derive the integration by parts formula in mathematical form.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved