Math Doubts

Product Rule of the Derivatives


$\dfrac{d}{dx}{\, \Big({f{(x)}}.{g{(x)}}\Big)}$ $\,=\,$ ${f{(x)}}{\dfrac{d}{dx}{g{(x)}}}$ $+$ ${g{(x)}}{\dfrac{d}{dx}{f{(x)}}}$


$f{(x)}$ and $g{(x)}$ are two differential functions in terms of $x$. The differentiation of product of them with respect to $x$ is written in the following mathematical form in calculus.

$\dfrac{d}{dx}{\, \Big({f{(x)}}.{g{(x)}}\Big)}$

The derivative of product can be calculated by the sum of product of first function and derivative of second function and product of second function and derivative of first function.

$\dfrac{d}{dx}{\, \Big({f{(x)}}.{g{(x)}}\Big)}$ $\,=\,$ ${f{(x)}}{\dfrac{d}{dx}{g{(x)}}}$ $+$ ${g{(x)}}{\dfrac{d}{dx}{f{(x)}}}$

This equality property is used in differential calculus for finding the differentiation of product of two or more functions.

The derivative of product rule is also simply written as $uv$ rule in calculus. It is expressed in terms of $u$ and $v$ by taking $f{(x)} = u$ and $g{(x)} = v$. It is called Leibniz’s notation for product rule.

Leibniz’s notation

$(1) \,\,\,$ $\dfrac{d}{dx}{\, (u.v)}$ $\,=\,$ $u\dfrac{dv}{dx}$ $+$ $v\dfrac{du}{dx}$

Differentials notation

$(2) \,\,\,$ ${d}{\, (u.v)}$ $\,=\,$ $u.{dv}$ $+$ $v.{du}$


There are two differential mathematical approaches to derive the product rule of differentiation in calculus.

$(1) \,\,\,$ Learn proof for derivative product rule by the definition of the derivative in limiting operation form.

$(2) \,\,\,$ Learn proof for differentiation product rule by logarithmic system and chain rule.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved